Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 600(7888): 231-234, 2021 12.
Article in English | MEDLINE | ID: mdl-34880428

ABSTRACT

Planet formation occurs around a wide range of stellar masses and stellar system architectures1. An improved understanding of the formation process can be achieved by studying it across the full parameter space, particularly towards the extremes. Earlier studies of planets in close-in orbits around high-mass stars have revealed an increase in giant planet frequency with increasing stellar mass2 until a turnover point at 1.9 solar masses (M⊙), above which the frequency rapidly decreases3. This could potentially imply that planet formation is impeded around more massive stars, and that giant planets around stars exceeding 3 M⊙ may be rare or non-existent. However, the methods used to detect planets in small orbits are insensitive to planets in wide orbits. Here we demonstrate the existence of a planet at 560 times the Sun-Earth distance from the 6- to 10-M⊙ binary b Centauri through direct imaging. The planet-to-star mass ratio of 0.10-0.17% is similar to the Jupiter-Sun ratio, but the separation of the detected planet is about 100 times wider than that of Jupiter. Our results show that planets can reside in much more massive stellar systems than what would be expected from extrapolation of previous results. The planet is unlikely to have formed in situ through the conventional core accretion mechanism4, but might have formed elsewhere and arrived to its present location through dynamical interactions, or might have formed via gravitational instability.

2.
Nature ; 595(7867): 370-372, 2021 07.
Article in English | MEDLINE | ID: mdl-34262209

ABSTRACT

Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis1,2. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System1,3, but do vary on galactic scales with a 12C/13C isotopologue ratio of around 68 in the current local interstellar medium4-6. In molecular clouds and protoplanetary disks, 12CO/13CO ratios can be altered by ice and gas partitioning7, low-temperature isotopic ion-exchange reactions8 and isotope-selective photodissociation9. Here we report observations of 13CO in the atmosphere of the young, accreting super-Jupiter TYC 8998-760-1 b, at a statistical significance of more than six sigma. Marginalizing over the planet's atmospheric temperature structure, chemical composition and spectral calibration uncertainties suggests a 12CO/13CO ratio of [Formula: see text](90% confidence), a substantial enrichment in 13C with respect to the terrestrial standard and the local interstellar value. As the current location of TYC 8998-760-1 b at greater than or equal to 160 astronomical units is far beyond the CO snowline, we postulate that it accreted a substantial fraction of its carbon from ices enriched in 13C through fractionation.

3.
Astron J ; 22013.
Article in English | MEDLINE | ID: mdl-30555172

ABSTRACT

We present parallax and proper motion measurements, near-infrared spectra, and WISE photometry for the low surface gravity L5γ dwarf 2MASSJ035523.37+113343.7 (2M0355). We use these data to evaluate photometric, spectral, and kinematic signatures of youth as 2M0355 is the reddest isolated L dwarf yet classified. We confirm its low-gravity spectral morphology and find a strong resemblance to the sharp triangular shaped H-band spectrum of the ∼10 Myr planetary-mass object 2M1207b. We find that 2M0355 is underluminous compared to a normal field L5 dwarf in the optical and MKO J, H, and K bands and transitions to being overluminous from 3-12 µm, indicating that enhanced photospheric dust shifts flux to longer wavelengths for young, low-gravity objects, creating a red spectral energy distribution. Investigating the near-infrared color magnitude diagram for brown dwarfs confirms that 2M0355 is redder and underluminous compared to the known brown dwarf population, similar to the peculiarities of directly imaged exoplanets 2M1207b and HR8799bcd. We calculate UVW space velocities and find that the motion of 2M0355 is consistent with young disk objects (< 2-3 Gyr) and it shows a high likelihood of membership in the AB Doradus association.

4.
Science ; 327(5970): 1238-40, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20203044

ABSTRACT

Stellar wind standoff by a planetary magnetic field prevents atmospheric erosion and water loss. Although the early Earth retained its water and atmosphere, and thus evolved as a habitable planet, little is known about Earth's magnetic field strength during that time. We report paleointensity results from single silicate crystals bearing magnetic inclusions that record a geodynamo 3.4 to 3.45 billion years ago. The measured field strength is approximately 50 to 70% that of the present-day field. When combined with a greater Paleoarchean solar wind pressure, the paleofield strength data suggest steady-state magnetopause standoff distances of < or = 5 Earth radii, similar to values observed during recent coronal mass ejection events. The data also suggest lower-latitude aurora and increases in polar cap area, as well as heating, expansion, and volatile loss from the exosphere that would have affected long-term atmospheric composition.

5.
Nature ; 433(7023): 286-9, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-15662417

ABSTRACT

Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 +/- 0.005 solar masses. Given its measured 1-2-micrometre luminosity, we have found that the standard mass-luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of approximately 2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.

SELECTION OF CITATIONS
SEARCH DETAIL
...