Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(37): 12391-12399, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34603669

ABSTRACT

Alloy formation is ubiquitous in inorganic materials science, and it strongly depends on the similarity between the alloyed atoms. Since molecules have widely different shapes, sizes and bonding properties, it is highly challenging to make alloyed molecular crystals. Here we report the generation of homogenous molecular alloys of organic light emitting diode materials that leads to tuning in their bandgaps and fluorescence emission. Tris(8-hydroxyquinolinato)aluminium (Alq3) and its Ga, In and Cr analogues (Gaq3, Inq3, and Crq3) form homogeneous mixed crystal phases thereby resulting in binary, ternary and even quaternary molecular alloys. The M x M'(1-x)q3 alloy crystals are investigated using X-ray diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy on single crystal samples, and photoluminescence properties are measured on the exact same single crystal specimens. The different series of alloys exhibit distinct trends in their optical bandgaps compared with their parent crystals. In the Al x Ga(1-x)q3 alloys the emission wavelengths lie in between those of the parent crystals, while the Al x In(1-x)q3 and Ga x In(1-x)q3 alloys have red shifts. Intriguingly, efficient fluorescence quenching is observed for the M x Cr(1-x)q3 alloys (M = Al, Ga) revealing the effect of paramagnetic molecular doping, and corroborating the molecular scale phase homogeneity.

2.
J Phys Chem Lett ; 12(12): 3059-3065, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33740368

ABSTRACT

We demonstrate systematic tuning in the optical bandgaps of molecular crystals achieved by the generation of molecular alloys/solid solutions of a series of diphenyl dichalcogenides-characterized by weak chalcogen bonding interactions involving S, Se, and Te atoms. Despite the variety in chalcogen bonding interactions found in this series of dichalcogenide crystals, they show isostructural interaction topologies, enabling the formation of solid solutions. The alloy crystals exhibit Vegard's law-like trends of variation in their unit cell dimensions and a nonlinear trend for the variation in optical bandgaps with respect to their compositions. Energy-dispersive X-ray and spatially resolved Raman spectroscopic studies indicate significant homogeneity in the domain structure of the solid solutions. Quantum periodic calculations of the projected density of states provide insights into the bandgap tuning in terms of the mixing of states in the alloy crystal phases.

3.
IUCrJ ; 2(Pt 5): 563-74, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26306198

ABSTRACT

Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...