Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298489

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.


Subject(s)
Kava , Lung Neoplasms , Animals , Humans , Chemoprevention/methods , Biomarkers , Lung Neoplasms/epidemiology , Lung Neoplasms/prevention & control , Lung Neoplasms/etiology
2.
J Ethnopharmacol ; 297: 115514, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35777607

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Piper methysticum G. Forst. (Piperaceae), commonly known as kava, has been used as a traditional beverage for centuries for its relaxing properties. Kavalactones are considered to be the major constituents responsible for kava's beneficial effects. Despite the extensive use of kava, clinical pharmacokinetic data is not available in the literature; therefore, the findings of this study will be critical for the dosage calculations for future clinical evaluation of kava. AIM OF THE STUDY: The aim of the current study is to examine the clinical pharmacokinetics of six major kavalactones following oral dosing of flavokavain A/B-free standardized kava extract capsules in healthy volunteers using two dosage regimens. MATERIALS AND METHODS: A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous quantification of six major kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin, and desmethoxyyangonin) and two flavokavains (A and B) in human plasma. Pharmacokinetic profiles were assessed in ten healthy volunteers after oral doses of standardized kava product, and plasma samples were analyzed for six kavalactones and two flavokavains using the validated UPLC-MS/MS method. Concentration-time data was subjected to pharmacokinetic analysis. RESULTS: The systemic exposure of the kavalactones was found to be in the following order: dihydrokavain > dihydromethysticin > kavain > methysticin > yangonin. Desmethoxyyangonin was quantifiable only at a couple of time points, while flavokavain A and flavokavain B were not present in any of the plasma samples. Fast absorption of five kavalactones was observed with time to reach the maximum plasma concentration of 1-3 h. A dose proportionality in pharmacokinetics was established from 75 to 225 mg of kavalactone doses. In the multiple-dose study, a significant reduction in the extent of absorption of kavalactones with food was observed. CONCLUSION: Single and multiple-dose clinical pharmacokinetic studies for kava were performed in healthy volunteers, and higher exposure to the kavalactones was observed after single-dosing (225 mg), while a longer duration of exposure was observed after three times a day (3 x 75 mg) dosing.


Subject(s)
Kava , Chromatography, Liquid , Healthy Volunteers , Humans , Kava/chemistry , Lactones/pharmacology , Plant Extracts/pharmacology , Tandem Mass Spectrometry/methods
3.
Planta Med ; 88(14): 1348-1359, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34839465

ABSTRACT

There are several forms of kava (Piper methysticum) products available for human consumption, and many factors are known to influence their chemical compositions and therefore their pharmacological properties. Because of the increased popularity of kava intake, a rigorous characterization of their content diversity is prerequisite, particularly due to its known potential to cause hepatotoxicity. To understand the composition diversity of kavalactones and flavokavains in commercial kava products, we developed a UPLC-MS/MS-based analytical method for the quantification of six kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin and desmethoxyyangonin) and two flavokavains (flavokavains A and B) and analyzed their contents in 28 different kava products in the form of capsules, tinctures, traditional aqueous suspensions and dried powders. Our results demonstrated a great variation in terms of the total and relative abundance of the analyzed kavalactones and flavokavains among the analyzed kava preparations. More importantly, the kavalactone abundance in the product label could differ up to 90% from our experimental measurements. Therefore, more rigorous and comprehensive quality control of kava products is required with respect to the content of individual kavalactones and flavokavains. Accurate content information is essential to understand the pharmacological properties and safety of different kava products.


Subject(s)
Kava , Humans , Kava/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Lactones/pharmacology , Lactones/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...