Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 221, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281224

ABSTRACT

Breast cancer (BC) is one of the most common cancers among women and can be fatal if not diagnosed and treated on time. Various genetic and environmental factors play a significant role in the development and progression of BC. Within the body, different signaling pathways have been identified that contribute to cancer progression, or conversely, cancer prevention. Phosphatase and tensin homolog (PTEN) is one of the proteins that prevent cancer by inhibiting the oncogenic PI3K/Akt/mTOR signaling pathway. MicroRNAs (miRNAs) are molecules with about 18 to 28 base pairs, which regulate about 30% of human genes after transcription. miRNAs play a key role in the progression or prevention of cancer through different signaling pathway and mechanisms, e.g., apoptosis, angiogenesis, and proliferation. miRNAs, which are upstream mediators of PTEN, can reinforce or suppress the effect of PTEN signaling on BC cells, and suppressing the PTEN signaling, linked to weakness of the cancer cells to chemotherapeutic drugs. However, the precise mechanism and function of miRNAs on PTEN in BC are not yet fully understood. Therefore, in the present study, has been focused on miRNAs regulating PTEN function in BC.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , MicroRNAs/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , PTEN Phosphohydrolase/metabolism , Cell Proliferation/genetics , Apoptosis , Gene Expression Regulation, Neoplastic/genetics
2.
Pathol Res Pract ; 251: 154845, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37839359

ABSTRACT

Cancer is one of the most common diseases in the world, and various genetic and environmental factors play a key role in its development. Breast cancer is one of the most common and deadly cancers in women. Exosomes are extracellular vesicles (EVs) with an average size of about 100 nm that contain lipids, proteins, microRNAs (miRNAs), and genetic factors and play a significant role in cell signaling, communication, tumorigenesis, and drug resistance. miRNAs are RNAs with about 22 nucleotides, which are synthesized by RNA polymerase and are involved in regulating gene expression, as well as the prevention or progression of cancer. Many studies have indicated the connection between miRNAs and exosomes. According to their findings, it seems that circulating exosomal miRNAs have not been well evaluated as biomarkers for breast cancer diagnosis or monitoring. Therefore, given the importance of miRNAs in exosomes, the goal of the present study was to clarify the relationship between miRNAs in exosomes and the role they play as biomarkers in breast cancer.


Subject(s)
Breast Neoplasms , Circulating MicroRNA , Exosomes , Extracellular Vesicles , MicroRNAs , Humans , Female , MicroRNAs/metabolism , Exosomes/genetics , Exosomes/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Extracellular Vesicles/metabolism , Biomarkers/metabolism
3.
Pathol Res Pract ; 249: 154757, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37598566

ABSTRACT

Similar to many other diseases, the etiology of Parkinson's disease (PD) is multifactorial and includes both genetic and environmental factors. Exposure to pesticides and the production of reactive oxygen species (ROS) in the body, mainly in electron transporter complexes 1 and 2 in the inner mitochondrial membrane, are two primary environmental risk factors for this disease. Increased accumulation of ROS and oxidative stress (OS) trigger a series of reactions that can lead to the aggregation of misfolded proteins, DNA damage, autophagy, and apoptosis, which may adversely affect cell function. These processes cause diseases such as coronary artery disease (CAD), Alzheimer's disease (AD), and PD. As indicated in previous studies, ROS is considered a critical regulator in the progression of PD. The human body contains several antioxidant molecules, such as vitamin A, vitamin C, bilirubin, and uric acid, as well as antioxidant enzymes including paraoxonase (PON), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Therefore, based on the canonical function of the antioxidant enzymes in PD, In the present review, we attempted to examine the function of antioxidant enzymes in PD.


Subject(s)
Antioxidants , Parkinson Disease , Humans , Reactive Oxygen Species , Ascorbic Acid , Glutathione Peroxidase
SELECTION OF CITATIONS
SEARCH DETAIL
...