Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Dermatol ; 191(1): 92-106, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38375775

ABSTRACT

BACKGROUND: Extracellular matrices play a critical role in tissue structure and function and aberrant remodelling of these matrices is a hallmark of many age-related diseases. In skin, loss of dermal collagens and disorganization of elastic fibre components are key features of photoageing. Although the application of some small matrix-derived peptides to aged skin has been shown to beneficially affect in vitro cell behaviour and, in vivo, molecular architecture and clinical appearance, the discovery of new peptides has lacked a guiding hypothesis. OBJECTIVES: To identify, using protease cleavage site prediction, novel putative matrikines with beneficial activities for skin composition and structure. METHODS: Here, we present an in silico (peptide cleavage prediction) to in vitro (proteomic and transcriptomic activity testing in cultured human dermal fibroblasts) to in vivo (short-term patch test and longer-term split-face clinical study) discovery pipeline, which enables the identification and characterization of peptides with differential activities. RESULTS: Using this pipeline we showed that cultured fibroblasts were responsive to all applied peptides, but their associated bioactivity was sequence-dependent. Based on bioactivity, toxicity and protein source, we further characterized a combination of two novel peptides, GPKG (glycine-proline-lysine-glycine) and LSVD (leucine-serine-valine-aspartate), that acted in vitro to enhance the transcription of matrix -organization and cell proliferation genes and in vivo (in a short-term patch test) to promote processes associated with epithelial and dermal maintenance and remodelling. Prolonged use of a formulation containing these peptides in a split-face clinical study led to significantly improved measures of crow's feet and firmness in a mixed population. CONCLUSIONS: This approach to peptide discovery and testing can identify new synthetic matrikines, providing insights into biological mechanisms of tissue homeostasis and repair and new pathways to clinical intervention.


Like other organs and tissues, the skin is composed of both cells and a complex network of molecules and proteins called an extracellular matrix. This matrix contains proteins such as collagen and elastin and undergoes many changes when the skin is damaged by the sun. We know from previous studies that small parts of matrix proteins (called peptide 'matrikines') can help to treat the signs of sun-related skin ageing. In this UK study, we show that new beneficial peptides (with matrikine activity) can be identified using machine learning (artificial intelligence) techniques that predict where common matrix proteins might be 'cut' by skin enzymes. Candidate peptides were first made in the laboratory and then applied to skin cells in culture. These cell culture screens demonstrated that, while all the peptides showed some matrikine activity, two were particularly promising. These two peptides were then tested in a short-term study on the forearm skin of volunteers and, in a longer-term study, on the face. We found that the combination of these two peptides can prompt forearm skin cells to express genes that are involved in many different aspect of skin health and, over the longer 6-month period, produce visible benefits in the appearance of fine lines and wrinkles and firmness on the face. Our findings suggest that this approach may be able to identify beneficial peptide treatments for not only skin ageing and diseases, but also unwanted changes in the extracellular matrix of other tissues and organs.


Subject(s)
Fibroblasts , Oligopeptides , Rejuvenation , Skin Aging , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Skin Aging/drug effects , Oligopeptides/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Cells, Cultured , Female , Middle Aged , Cell Proliferation/drug effects , Extracellular Matrix/metabolism , Male , Extracellular Matrix Proteins/metabolism , Adult , Aged , Proteomics/methods
2.
Int J Cosmet Sci ; 44(6): 625-635, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35778881

ABSTRACT

BACKGROUND: Although retinol skin care products improve the appearance of photoaged skin, there is a need for an effective retinol concentration that provides skin benefits without irritation. OBJECTIVE: To compare the efficacy of topical 0.1%, 0.3% and 1% retinol in remodelling the cutaneous architecture in an in vivo experimental patch test study, and to determine tolerance of the most effective formulations when used in a daily in-use escalation study. METHODS: For the patch test study, retinol products were applied under occlusion, to the extensor forearm of photoaged volunteers (n = 5; age range 66-84 years), and 3 mm skin biopsies obtained after 12 days. Effects of different retinol concentrations, and a vehicle control, on key epidermal and dermal biomarkers of cellular proliferation and dermal remodelling were compared to untreated baseline. Separately, participants (n = 218) recorded their tolerance to 0.3% or 1% retinol over a six-week, approved regimen, which gradually increased the facial applications to once nightly. RESULTS: Retinol treatment induced a stepwise increase in epidermal thickness and induced the expression of stratum corneum proteins, filaggrin and KPRP. 0.3% retinol and 1% retinol were comparably effective at inducing keratinocyte proliferation in the epidermis, whilst reducing e-cadherin expression. Fibrillin-rich microfibril deposition was increased following treatment with 0.3% and 1% retinol (p < 0.01); other dermal components remained unaltered (e.g., fibronectin, collagen fibrils, elastin), and no evidence of local inflammation was detected. The in-use study found that 0.3% retinol was better tolerated than 1% retinol, with fewer and milder adverse events reported (χ2 (1) = 23.97; p < 0.001). CONCLUSIONS: This study suggests that 1% and 0.3% retinol concentrations were similarly effective at remodelling photodamaged skin in an in vivo model of long-term use. Use of 0.3% retinol in the escalation study was associated with fewer adverse reactions when applied daily. Hence, 0.3% retinol may be better tolerated than 1% retinol, thereby allowing longer-term topical application.


CONTEXTE: Même si les produits de soins pour la peau à base de rétinol améliorent l'apparence de la peau photovieillie, il est nécessaire d'obtenir une concentration efficace de rétinol procurant des bénéfices cutanés sans irritation. OBJECTIF: Comparer l'efficacité du rétinol à 0.1%, 0.3% et 1% en application locale dans le remodelage de l'architecture cutanée dans une étude d'irritation cutanée in vivo expérimental, et déterminer la tolérance des formulations les plus efficaces lorsqu'elles sont utilisées dans une étude à doses progressives quotidiennes en cours d'utilisation. MÉTHODES: Pour l'étude d'irritation cutanée, des produits à base de rétinol ont été appliqués sous occlusion, sur le muscle extenseur de l'avant-bras de volontaires présentant des signes de photovieillissement (n = 5; tranche d'âge: 66 à 84 ans), et des biopsies cutanées de 3 mm ont été obtenues après 12 jours. Les effets des différentes concentrations de rétinol, et d'un véhicule témoin sur les principaux biomarqueurs épidermiques et dermiques de la prolifération cellulaire et du remodelage dermique ont été comparés à ceux observés à une région non traitée. Séparément, les participants (n = 218) ont enregistré leur tolérance au rétinol à 0.3% ou 1% au cours d'un schéma posologique approuvé de six semaines, qui a progressivement augmenté les applications faciales à une fois par nuit. RÉSULTATS: Le traitement par rétinol a induit une augmentation progressive de l'épaisseur épidermique, et a induit l'expression des protéines de la couche cornée, la filaggrine et le KPRP. Le rétinol à 0.3% et le rétinol à 1% étaient aussi efficaces pour induire la prolifération des kératinocytes dans l'épiderme, tout en réduisant l'expression de la cadhérine E. Le dépôt de microfibrilles riches en fibrilline a augmenté après un traitement par rétinol à 0.3% et 1% (p < 0.001). CONCLUSIONS: Cette étude suggère que les concentrations de rétinol de 1% et 0.3% étaient aussi efficaces pour remodeler la peau photolésée dans un modèle in vivo lors d'une utilisation à long terme. L'utilisation de rétinol à 0.3% dans l'étude à doses progressives a été associée à moins d'effets indésirables lorsqu'il est appliqué quotidiennement. Par conséquent, le rétinol à 0.3% peut être mieux toléré que le rétinol à 1%, permettant ainsi une application topique à plus long terme.


Subject(s)
Skin Aging , Vitamin A , Humans , Aged , Aged, 80 and over , Vitamin A/pharmacology , Skin , Face , Epidermis
3.
Front Immunol ; 10: 1566, 2019.
Article in English | MEDLINE | ID: mdl-31379813

ABSTRACT

The inflammasome is a multi-protein complex that mediates proteolytic cleavage and release of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis-a form of cell death induced by various pathogenic bacteria. Apoptosis-associated speck-like protein containing a CARD (ASC) has a pivotal role in inflammasome assembly and activation. While ASC function has been primarily implicated in innate immune cells, its contribution to lymphocyte biology is unclear. Here we report that ASC is constitutively expressed in naïve CD4+ T cells together with the inflammasome sensor NLRP3 and caspase-1. When adoptively transferred in immunocompromised Rag1-/- mice, Asc-/- CD4+ T cells exacerbate T-cell-mediated autoimmune colitis. Asc-/- CD4+ T cells exhibit a higher proliferative capacity in vitro than wild-type CD4+ T cells. The increased expansion of Asc-/- CD4+ T cells in vivo correlated with robust TCR-mediated activation, inflammatory activity, and higher metabolic profile toward a highly glycolytic phenotype. These findings identify ASC as a crucial intrinsic regulator of CD4+ T-cell expansion that serves to maintain intestinal homeostasis.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Homeostasis/immunology , Intestines/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Caspase 1/genetics , Caspase 1/immunology , Caspase 1/metabolism , Cells, Cultured , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Homeostasis/genetics , Inflammasomes/genetics , Inflammasomes/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
4.
Front Immunol ; 10: 1556, 2019.
Article in English | MEDLINE | ID: mdl-31333677

ABSTRACT

The inflammasome is an intracellular multi-protein complex that orchestrates the release of the pro-inflammatory cytokines IL-1ß and IL-18, and a form of cell death known as pyroptosis. Tyrosine phosphorylation of the inflammasome sensors NLRP3, AIM2, NLRC4, and the adaptor protein, apoptosis-associated speck-like protein (ASC) has previously been demonstrated to be essential in the regulation of the inflammasome. By using the pharmacological protein tyrosine phosphatase (PTPase) inhibitor, phenylarsine oxide (PAO), we have demonstrated that tyrosine dephosphorylation is an essential step for the activation of the NLRP3 and AIM2 inflammasomes in human and murine macrophages. We have also shown that PTPase activity is required for ASC nucleation leading to caspase-1 activation, IL-1ß, and IL-18 processing and release, and cell death. Furthermore, by site-directed mutagenesis of ASC tyrosine residues, we have identified the phosphorylation of tyrosine Y60 and Y137 of ASC as critical for inflammasome assembly and function. Therefore, we report that ASC tyrosine dephosphorylation and phosphorylation are crucial events for inflammasome activation.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphorylation/physiology , Tyrosine/metabolism , Animals , Caspase 1/metabolism , Cell Line , Cytokines/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Protein Tyrosine Phosphatases/metabolism , Th1 Cells
5.
Chem Commun (Camb) ; 51(34): 7305-8, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25820536

ABSTRACT

We report the synthesis of a stable analogue of τ-phosphohistidine: 4-phosphopyrazol-2-yl alanine (pPza). Polyclonal antibodies generated against the mimic show high reactivity and selectivity for τ-phosphohistidine, with minor or no cross-reactivity towards non-phosphorylated histidine or O-phosphoamino acids, including phosphotyrosine.


Subject(s)
Amino Acids, Cyclic/chemistry , Histidine/analogs & derivatives , Organophosphonates/chemistry , Pyrazoles/chemistry , Amino Acids, Cyclic/immunology , Animals , Cross Reactions , Histidine/chemistry , Histidine/immunology , Hydrolysis , Immune Sera/immunology , Isomerism , Organophosphonates/immunology , Pyrazoles/immunology , Rats
6.
Chem Commun (Camb) ; 50(66): 9343-5, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25002222

ABSTRACT

Polyclonal antibodies raised against 4-phosphothiophen-2-yl alanine 2a, a novel five-membered ring analogue of phosphotyrosine, showed high selectivity for phosphotyrosine and no cross-reactivity with other phosphorylated amino acids. Western blots showed that the polyclonal was similarly effective, but different in selectivity, to a commercially available monoclonal antibody.


Subject(s)
Alanine/analogs & derivatives , Phosphotyrosine/chemistry , Alanine/chemistry , Blotting, Western , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...