Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 718: 150080, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735137

ABSTRACT

Catalytic promiscuity of enzymes plays a pivotal role in driving the evolution of plant specialized metabolism. Chalcone synthase (CHS) catalyzes the production of 2',4,4',6'-tetrahydroxychalcone (THC), a common precursor of plant flavonoids, from p-coumaroyl-coenzyme A (-CoA) and three malonyl-CoA molecules. CHS has promiscuous product specificity, producing a significant amount of p-coumaroyltriacetic lactone (CTAL) in vitro. However, mechanistic aspects of this CHS promiscuity remain to be clarified. Here, we show that the product specificity of soybean CHS (GmCHS1) is altered by CoA, a reaction product, which selectively inhibits THC production (IC50, 67 µM) and enhances CTAL production. We determined the structure of a ternary GmCHS1/CoA/naringenin complex, in which CoA is bound to the CoA-binding tunnel via interactions with Lys55, Arg58, and Lys268. Replacement of these residues by alanine resulted in an enhanced THC/CTAL production ratio, suggesting the role of these residues in the CoA-mediated alteration of product specificity. In the ternary complex, a mobile loop ("the K-loop"), which contains Lys268, was in a "closed conformation" placing over the CoA-binding tunnel, whereas in the apo and binary complex structures, the K-loop was in an "open conformation" and remote from the tunnel. We propose that the production of THC involves a transition of the K-loop conformation between the open and closed states, whereas synthesis of CTAL is independent of it. In the presence of CoA, an enzyme conformer with the closed K-loop conformation becomes increasingly dominant, hampering the transition of K-loop conformations to result in decreased THC production and increased CTAL production.


Subject(s)
Acyltransferases , Glycine max , Acyltransferases/chemistry , Acyltransferases/metabolism , Acyltransferases/genetics , Glycine max/enzymology , Substrate Specificity , Coenzyme A/metabolism , Coenzyme A/chemistry , Models, Molecular , Protein Conformation , Chalcones/chemistry , Chalcones/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Proteins ; 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32725893

ABSTRACT

Isoflavonoid is one of the groups of flavonoids that play pivotal roles in the survival of land plants. Chalcone synthase (CHS), the first enzyme of the isoflavonoid biosynthetic pathway, catalyzes the formation of a common isoflavonoid precursor. We have previously reported that an isozyme of soybean CHS (termed GmCHS1) is a key component of the isoflavonoid metabolon, a protein complex to enhance efficiency of isoflavonoid production. Here, we determined the crystal structure of GmCHS1 as a first step of understanding the metabolon structure, as well as to better understand the catalytic mechanism of GmCHS1.

3.
Nat Commun ; 11(1): 870, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054839

ABSTRACT

Land plants produce diverse flavonoids for growth, survival, and reproduction. Chalcone synthase is the first committed enzyme of the flavonoid biosynthetic pathway and catalyzes the production of 2',4,4',6'-tetrahydroxychalcone (THC). However, it also produces other polyketides, including p-coumaroyltriacetic acid lactone (CTAL), because of the derailment of the chalcone-producing pathway. This promiscuity of CHS catalysis adversely affects the efficiency of flavonoid biosynthesis, although it is also believed to have led to the evolution of stilbene synthase and p-coumaroyltriacetic acid synthase. In this study, we establish that chalcone isomerase-like proteins (CHILs), which are encoded by genes that are ubiquitous in land plant genomes, bind to CHS to enhance THC production and decrease CTAL formation, thereby rectifying the promiscuous CHS catalysis. This CHIL function has been confirmed in diverse land plant species, and represents a conserved strategy facilitating the efficient influx of substrates from the phenylpropanoid pathway to the flavonoid pathway.


Subject(s)
Acyltransferases/metabolism , Embryophyta/metabolism , Intramolecular Lyases/metabolism , Plant Proteins/metabolism , Acyltransferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Biocatalysis , Biosynthetic Pathways/genetics , Chalcones/biosynthesis , Embryophyta/genetics , Evolution, Molecular , Flavonoids/biosynthesis , Genes, Plant , Genetic Complementation Test , Intramolecular Lyases/genetics , Kinetics , Plant Proteins/genetics , Plants, Genetically Modified , Polyketides/metabolism , Substrate Specificity
4.
Plant J ; 96(1): 56-74, 2018 10.
Article in English | MEDLINE | ID: mdl-29979476

ABSTRACT

Soybean (Glycine max) 5-deoxyisoflavonoids (daidzein and its conjugates) are precursors of glyceollin phytoalexins. They are also converted to equol by microbes in the human intestine, resulting in health benefits. 5-Deoxyisoflavonoids accumulate in the roots (93% mol/mol of the total root isoflavonoids) and seeds of unstressed soybean plants. Chalcone reductase (CHR) is a key enzyme mediating 5-deoxyisoflavonoid biosynthesis because it catalyzes the production of 6'-deoxychalcone through its effects on the chalcone synthase (CHS)-catalyzed reaction. The soybean genome encodes at least 11 CHR-related homologs, but it is unclear which ones are functionally important for daidzein accumulation in unstressed plants. Among the CHR homologs, the temporal and spatial expression patterns of GmCHR5 were the most correlated with the distribution patterns of 5-deoxyisoflavonoids. The CHR activity of GmCHR5 was confirmed in vitro and in planta. In the in vitro assays, the ratio of CHR products (6'-deoxychalcone) to total CHS products (R value) was dependent on GmCHR5 and CHS concentrations, with higher concentrations resulting in higher R values (i.e. approaching 90%). Subcellular localization analyses revealed that GmCHR5 was present in the cytoplasm and nucleus. Protein-protein interaction assays indicated that GmCHR5, but not GmCHR1 and GmCHR6, interacted with 2-hydroxyisoflavanone synthase (IFS) isozymes. The CHS isozymes also interacted with IFS isozymes but not with GmCHR5. The proposed micro-compartmentalization of isoflavone biosynthesis through the formation of an IFS-mediated metabolon is probably involved in positioning GmCHR5 close to CHS, resulting in an R value that is high enough for the accumulation of abundant 5-deoxyisoflavonoids in soybean roots.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Glycine max/metabolism , Isoflavones/metabolism , Plant Proteins/metabolism , Alcohol Oxidoreductases/genetics , Flavonoids/metabolism , Isoenzymes/metabolism , Metabolic Networks and Pathways , Phylogeny , Plant Proteins/genetics , Glycine max/enzymology , Glycine max/genetics
5.
Biochem Biophys Res Commun ; 469(3): 546-51, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26694697

ABSTRACT

Metabolic enzymes, including those involved in flavonoid biosynthesis, are proposed to form weakly bound, ordered protein complexes, called "metabolons". Some hypothetical models of flavonoid biosynthetic metabolons have been proposed, in which metabolic enzymes are believed to anchor to the cytoplasmic surface of the endoplasmic reticulum (ER) via ER-bound cytochrome P450 isozymes (P450s). However, no convincing evidence for the interaction of flavonoid biosynthetic enzymes with P450s has been reported previously. Here, we analyzed binary protein-protein interactions of 2-hydroxyisoflavanone synthase 1 (GmIFS1), a P450 (CYP93C), with cytoplasmic enzymes involved in isoflavone biosynthesis in soybean. We identified binary interactions between GmIFS1 and chalcone synthase 1 (GmCHS1) and between GmIFS1 and chalcone isomerases (GmCHIs) by using a split-ubiquitin membrane yeast two-hybrid system. These binary interactions were confirmed in planta by means of bimolecular fluorescence complementation (BiFC) using tobacco leaf cells. In these BiFC analyses, fluorescence signals that arose from the interaction of these cytoplasmic enzymes with GmIFS1 generated sharp, network-like intracellular patterns, which was very similar to the ER-localized fluorescence patterns of GmIFS1 labeled with a fluorescent protein. These observations provide strong evidence that, in planta, interaction of GmCHS1 and GmCHIs with GmIFS1 takes place on ER on which GmIFS1 is located, and also provide important clues to understand how enzymes and proteins form metabolons to establish efficient metabolic flux of (iso)flavonoid biosynthesis.


Subject(s)
Acyltransferases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Flavonoids/metabolism , Glycine max/enzymology , Intramolecular Lyases/metabolism , Recombinant Proteins/metabolism , Protein Interaction Mapping/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...