Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 28(8): 1545-1558, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36389090

ABSTRACT

The germination process and seedling development are the determining steps in the plant lifecycle that are the most sensitive to adverse environmental conditions. Therefore, this study was conducted to explore the effects of temperature and osmotic potential on germination responses using threshold models and to establish an optimal priming protocol for improving tolerance responses against osmotic stress in early growth stages. The results demonstrated that osmotic stress of - 0.8 MPa significantly influenced the extent, timing, and speed of seed germination. In addition, priming treatments led to an enhanced performance of early growth stages in response to osmotic stress. Based on thermal-time and hydro-time models, the predicted physiological parameters of the median thermal-time at sub-optimal temperature ( θ T 50 = 909.09 ∘ C  h), the median ceiling temperature for 50% germination (Tc(50) = 39.29 °C), the common base temperature (Tb = 7.88 °C), the constant thermal-time at supra-optimal temperature ( θ T = 805.96 °C h), the threshold water potential (Ψb(50) = - 1.13 MPa), and the hydro-time constant ( θ H = 56.09 MPa h) quantitatively describe the tolerance threshold of the germination process under different osmotic and temperature conditions. The results also showed that the efficiency of seed treatments depended on the priming conditions, including temperature, duration, and also concentration of the priming agent. However, the treatments of gibberellic acid (5 days, 10 °C, 100 ppm), salicylic acid (5 days, 10 °C, 50 ppm), calcium chloride (3 days, 10 °C, 10 mM), potassium nitrate (3 days, 10 °C, 100 mM), and hydro-priming (3 days, 10 °C) were optimal protocols of each priming method, resulting in an increased seed vigor under osmotic stress. Hence, the predicted biological parameters could easily be applied to determine the physiological changes of germination under environmental factors over time. Also, results suggest that recommended osmo-, hydro-, and hormonal-priming treatments could be efficient methods for ameliorating the osmotic tolerance in the post-priming stages of this plant, especially in arid lands. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01229-w.

2.
Physiol Mol Biol Plants ; 28(1): 251-274, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35221582

ABSTRACT

Salinity restricts seed germination and seedling growth through induction of osmotic and oxidative stresses. Therefore, this study aimed to enhance salinity tolerance in quinoa seed by pre-optimized osmo-priming treatments of CaCl2 (10 mM, 10 °C, 10 h) and KNO3 (150 mM, 5 °C, 24 h). The results showed that these treatments developed the cellular defense mechanisms in seeds as 'priming memory' that could improve the physiological and biochemical responses to salinity in post-priming stages. The germination capacity and seedling growth decreased with increasing salinity that was accompanied with a higher content of MDA and H2O2. However, the improvement of primed seed vigor against high salinity was explained by increasing the biological defense mechanisms including antioxidant enzymes (CAT, APX, SOD, GPX and PPO) and antioxidant metabolites (DPPH antioxidant activity, phenolics, flavonoids, ascorbic acid), particularly in presence of salt stress. In addition, Ca2+ and K+ priming acquired salinity tolerance in post-priming stages through a significant increase in the accumulation of proline, glycine-betaine, soluble carbohydrate. Improvement in homeostasis of K+/Na+ ratio by promoting K+ maintenance and Na+ exclusion was also found in post-priming stages. These observations may be utilized as effective methods in improving salinity tolerance of quinoa seed germination in saline agriculture by improving the antioxidant system, osmolyte accumulation and mineral nutrient homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...