Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Food Prot ; 79(12): 2160-2166, 2016 12.
Article in English | MEDLINE | ID: mdl-28221960

ABSTRACT

Experiments were conducted to assess the influence of storage practices on mycotoxin incidences in stored maize and groundnuts in Kilosa District, Eastern Central Tanzania. Factorial experiments were used to test the effects of processing, storage conditions, and protectants at 3-month intervals for 12 weeks. Temperature and relative humidity data were recorded by using data loggers. The differences among the treatment means were compared using Tukey's honestly significant difference test at 5% probability level. The log-linear model was used to determine the influence of weather on mycotoxin. Dried neem ( Azadirachta indica ) leaves significantly reduced fumonisin B1 (FB1) in stored maize. Levels of FB1 were significantly higher in maize heaped on the floor than in the other tested storage methods (P < 0.001). Similarly, aflatoxin levels were significantly higher in groundnuts stored in nylon bags than in the other tested methods (P < 0.001). The high concentration of mycotoxins at the study villages suggests that storage practices and weather conditions play major roles in mycotoxin production.


Subject(s)
Food Contamination , Zea mays , Fumonisins , Mycotoxins , Tanzania
2.
Plant Dis ; 98(9): 1271, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30699662

ABSTRACT

Dry bulb onion (Allium cepa L. cvs. Pulsar, Bradley, and Livingston) plants with symptoms of anthracnose were observed in three commercial fields totaling 76.5 ha in Huron Co., Ohio, in July 2013. Symptoms were oval leaf lesions and yellowing, curling, twisting, chlorosis, and death of leaves. Nearly half of the plants in a 32.8-ha field of the cv. Pulsar were symptomatic. Concentric rings of acervuli with salmon-colored conidial masses were observed in the lesions. Conidia were straight with tapered ends and 16 to 23 × 3 to 6 µm (2). Colletotrichum coccodes (Wallr.) S. Hughes was regularly isolated from infected plants (2). Culturing diseased leaf tissue on potato dextrose agar (PDA) amended with 30 ppm rifampicin and 100 ppm ampicillin at room temperature yielded white aerial mycelia and salmon-colored conidial masses in acervuli. Numerous spherical, black microsclerotia were produced on the surface of colonies after 10 to 14 days. To confirm pathogen identity, total DNA was extracted directly from a 7-day-old culture of isolate SAM30-13 grown on PDA, using the Wizard SV Genomic DNA Purification System (Promega, Madison, WI) following the manufacturer's instructions. The ribosomal DNA internal transcribed spacer (ITS) region was amplified by PCR using the primer pair ITS1 and ITS4 (2), and sequenced. The sequence, deposited in GenBank (KF894404), was 99% identical to that of a C. coccodes isolate from Michigan (JQ682644) (1). Ten onion seedlings cv. Ebenezer White at the two- to three-leaf stage of growth were spray-inoculated with a conidial suspension (1 × 105 conidia/ml containing 0.01% Tween 20, with 10 ml applied/plant). Plants were maintained in a greenhouse (21 to 23°C) until symptoms appeared. Control plants were sprayed with sterilized water containing 0.01% Tween 20, and maintained in the same environment. After 30 days, sunken, oval lesions each with a salmon-colored center developed on the inoculated plants, and microscopic examination revealed the same pathogen morphology as the original isolates. C. coccodes was re-isolated consistently from leaf lesions. All non-inoculated control plants remained disease-free, and C. coccodes was not re-isolated from leaves of control plants. C. coccodes was reported infecting onions in the United States for the first time in Michigan in 2012 (1). This is the first report of anthracnose of onion caused by C. coccodes in Ohio. Unusually wet, warm conditions in Ohio in 2013 likely contributed to the outbreak of this disease. Timely fungicide applications will be necessary to manage this disease in affected areas. References: (1) A. K. Lees and A. J. Hilton. Plant Pathol. 52:3. 2003. (2) L. M. Rodriguez-Salamanca et al. Plant Dis. 96:769. 2012. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.

3.
Plant Dis ; 98(4): 574, 2014 Apr.
Article in English | MEDLINE | ID: mdl-30708701

ABSTRACT

Leek yellow stripe virus (LYSV), genus Potyvirus, family Potyviridae, infects a wide range of Allium species worldwide. LYSV is one of several viruses that chronically infect garlic, Allium sativum L. The garlic virus complex, which includes LYSV, Onion yellow dwarf virus, and Garlic common latent virus, is perpetuated by asexual propagation (4) and is transmitted to clean planting material by aphids (3). This virus complex can reduce garlic bulb weight by nearly three quarters (2), and LYSV-only infections can result in approximately a one-quarter reduction in bulb weight (2). Garlic is grown as a small-scale, specialty crop in Ohio. During late May and early June 2013, garlic plants with virus-like symptoms were collected from Medina, Holmes, and Wayne counties, Ohio. Plants exhibited chlorotic streaking, foliar dieback, dwarfing, small bulbs, and cylindrical bulbs that failed to differentiate into cloves. Incidence of affected plants in the fields was up to 5% and all fields had early season aphid infestations. Flexuous rods were observed in TEM micrographs of plant sap from symptomatic leaves. Five symptomatic plants and six asymptomatic plants (from fields with symptomatic plants) were evaluated for LYSV by DAS-ELISA (Agdia, Inc., Elkhart, IN). Reverse transcriptase (RT)-PCR with LYSV-specific primers LYSV-WA and LYSV-WAR (3) was performed with cDNA generated by the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). Both foliar and bulb tissues were tested using both detection methods. Forty percent of symptomatic plants and 67% of asymptomatic plants tested positive for LYSV with both ELISA and RT-PCR. LYSV was detected in both foliar and bulb tissues, including both tissues from asymptomatic plants. Five PCR amplicons generated from both foliar and bulb tissue were sequenced and shown to share 96 to 98% maximum identity with an LYSV polyprotein gene accession in GenBank (AY842136). This provided additional support that the detected virus was LYSV. LYSV was initially difficult to detect in Ohio fields due to low disease incidence and subtle symptom development. Use of virus-tested garlic bulbs can improve yield for several years, even following viral reinfection by aphids, compared to growing garlic from chronically infected bulbs (1). However, many growers routinely save bulbs from year to year and lack access to or knowledge of virus-tested sources of garlic bulbs. Conducive conditions, chronic infections, or co-infections with other viruses enhance the severity of symptoms and yield loss (2). LYSV has previously been reported in garlic producing regions of the northwestern United States (3), and to our knowledge, this is the first report of LYSV in garlic in Ohio. References: (1) V. Conci et al. Plant Dis. 87:1411, 2003. (2) P. Lunello et al. Plant Dis. 91:153, 2008. (3) H. Pappu et al. Plant Health Progress 10, 2008. (4) L. Parrano et al. Phytopathol. Mediterr. 51:549, 2012.

SELECTION OF CITATIONS
SEARCH DETAIL