Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 13(11): 2644-2652, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35297635

ABSTRACT

Density functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nosé-Hoover, Berendsen, and simple velocity-rescaling methods fail to provide a reliable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a "feature" of any particular code but are present in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726-740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nosé-Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics.

2.
Nanoscale ; 12(46): 23859-23868, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33237092

ABSTRACT

Atomically precise metal nanoclusters, stabilized and functionalized by organic ligands, are emerging nanomaterials with potential applications in plasmonics, nano-electronics, bio-imaging, nanocatalysis, and as therapeutic agents or drug carriers in nanomedicine. The ligand layer has an important role in modifying the physico-chemical properties of the clusters and in defining the interactions between the clusters and the environment. While this role is well recognized from a great deal of experimental studies, there is very little theoretical information on dynamical processes within the layer itself. Here, we have performed extensive molecular dynamics simulations, with forces calculated from the density functional theory, to investigate thermal stability and dynamics of the ligand layer of the meta-mercaptobenzoic acid (m-MBA) protected Au68 and Au144 nanoclusters, which are the first two gold nanoclusters structurally solved to atomic precision by electron microscopy [Azubel et al., Science, 2014, 345, 909 and ACS Nano, 2017, 11, 11866]. We visualize and analyze dynamics of three distinct non-covalent interactions, viz., ligand-ligand hydrogen bonding, metal-ligand O[double bond, length as m-dash]C-OHAu interaction, and metal-ligand Ph(π)Au interaction. We discuss their relevance for defining, at the same time, the dynamic stability and reactivity of the cluster. These interactions promote the possibility of ligand addition reactions for bio-functionalization or allow the protected cluster to act as a catalyst where active sites are dynamically accessible inside the ligand layer.

3.
J Chem Phys ; 152(14): 144704, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295372

ABSTRACT

We show, using density functional theory calculations, that the charge, magnetic moment, and morphology of deposited Au nanoclusters can be tuned widely by doping the oxide support with aliovalent cations and anions. As model systems, we have considered Aun (n = 1, 2, or 20) deposited on doped MgO and MgO/Mo supports. The supports have been substitutionally doped with varying concentrations θ of F, Al, N, Na, or Li. At θ = 2.78%, by varying the dopant species, we are able to tune the charge of the Au monomer between -0.84e and +0.21e, the Au dimer between -0.87e and -0.16e, and, most interestingly, Au20 between -3.97e and +0.49e. These ranges can be further extended by varying θ. These changes in charge are correlated with changes in adsorption and/or cluster geometry and magnetic moment. We find that the work function Φ of the bare support is a good predictor and descriptor of both the geometry and charge of the deposited Au cluster; it can, therefore, be used to quickly estimate which dopant species and concentration can result in a desired cluster morphology and charge state. This is of interest as these parameters are known to significantly impact cluster reactivity, with positively or negatively charged clusters being preferred as catalysts for different chemical reactions. It is particularly noteworthy that the Na-doped and Li-doped supports succeed in making Au20 positively charged, given the high electronegativity of Au.

4.
Chemistry ; 26(31): 7051-7058, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32220016

ABSTRACT

Controlling the size and uniformity of metal clusters with atomic precision is essential for fine-tuning their catalytic properties, however for clusters deposited on supports, such control is challenging. Here, by combining X-ray absorption spectroscopy and density functional theory calculations, it is shown that supports play a crucial role in the evolution of monolayer-protected clusters into catalysts. Based on the acidic nature of the support, cluster-support interactions lead either to fragmentation of the cluster into isolated Au-ligand species or ligand-free metallic Au0 clusters. On Lewis acidic supports that bind metals strongly, the latter transformation occurs while preserving the original size of the metal cluster, as demonstrated for various Aun sizes. These findings underline the role of the support in the design of supported catalysts and represent an important step toward the synthesis of atomically precise supported nanomaterials with tailored physico-chemical properties.

5.
J Chem Phys ; 151(14): 144709, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615259

ABSTRACT

Sintering is one of the main causes of degradation of nanocatalysts. With a view to studying the process of sintering, and its relative likelihood across elements, we have used ab initio density functional theory to compute the pathways and energy barriers Ed for the diffusion of small clusters Ptn on MgO(001), n = 1-4. We compare with the corresponding results for Aun, Agn, and Pdn. In general, diffusion barriers, but also sintering energies, are highest for Pt, resulting in opposing trends from kinetics and thermodynamics. We find smooth and positive correlations between Ed and Eb, Eb and Ecoh, Ecoh and Tm, and thus, between Ed and Tm, where Eb is the binding energy of the cluster on MgO, and Ecoh and Tm are the cohesive energy and melting temperature, respectively, of the corresponding bulk metal. These trends are present for diffusion of the monomers, trimers, and tetramers, but not the dimers; this can be explained by the topography of the energy landscape separating the global minimum from the transition state. The temperature T0 at which metal clusters on a given support become mobile is given by α + ßTm, where α and ß are constants that depend on the support. We also present similar results for self-diffusion of monomers of the four metals on the (111) surfaces. Such scaling relations could be used to rapidly estimate diffusion barriers, and hence the growth and sintering behavior, of potential catalytic metal clusters.

6.
ACS Nano ; 13(5): 5975-5986, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31067029

ABSTRACT

Copper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst.

7.
J Phys Condens Matter ; 31(14): 144002, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30625421

ABSTRACT

We have used ab initio density functional theory together with ab initio atomistic thermodynamics, and in situ x-ray absorption near edge spectroscopy (XANES) experiments, to study the oxidation of sub-nanometer clusters of Cu n O x supported on a hydroxylated amorphous alumina substrate in an O2-rich environment. We obtain (p , T) phase diagrams: these differ notably for the nanoclusters compared to the bulk. Both the theory and experiment suggest that in the presence of oxygen, the cluster will oxidize from its elemental state to the oxidized state as the temperature decreases. We obtain a clear trend for the transition of Cu n → Cu n O n/2: we see that the smaller the cluster, the greater is the tendency toward oxidation. However, we do not see a monotonic size-dependent trend for the transition of Cu n O n/2 → Cu n O n . We suggest that theoretically computed Bader charges constitute a simple yet quantitative way to align experimental measures of XANES edges with theoretical calculations, so as to yield oxidation states for nanoclusters. Our results have important implications for the use of small clusters in fields such as nanocatalysis and nanomedicine.

8.
J Chem Phys ; 149(17): 174701, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30408976

ABSTRACT

Au nanoparticles are promising catalysts for industrially important reactions. Their catalytic activity is known to depend on their charge state and morphology. Using density functional theory calculations, we have studied how the induced charge and dimensionality of small Au clusters can be tuned by doping the oxide support that they are deposited on. We have investigated Au n clusters of sizes n = 1, 2, 3, and 20 on Al-doped MgO and Mo-doped CaO. We show that substitutionally doping the oxide support with an electron donor changes the cluster morphology from an upright and/or three-dimensional geometry to a flat geometry. This structural wetting transition results in an increase in the negative charge induced on the cluster and a consequent lowering in the dissociation barrier for the O2 atoms adsorbed on the cluster. We find that the nature of Mo and Al dopants differs: only for the former is it true that the charge state of the dopant atoms depends on the presence or absence of Au nanoparticles and their size.

9.
J Chem Phys ; 143(14): 144307, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26472379

ABSTRACT

We suggest that the reactivity of Au nanocatalysts can be greatly increased by doping the oxide substrate on which they are placed with an electron donor. To demonstrate this, we perform density functional theory calculations on a model system consisting of a 20-atom gold cluster placed on a MgO substrate doped with Al atoms. We show that not only does such substrate doping switch the morphology of the nanoparticles from the three-dimensional tetrahedral form to the two-dimensional planar form, but it also significantly lowers the barrier for oxygen dissociation by an amount proportional to the dopant concentration. At a doping level of 2.78%, the dissociation barrier is reduced by more than half, which corresponds to a speeding up of the oxygen dissociation rate by five orders of magnitude at room temperature. This arises from a lowering in energy of the s and p states of Au. The d states are also lowered in energy, however, this by itself would have tended to reduce reactivity. We propose that a suitable measure of the reactivity of Au nanoparticles is the difference in energy of sp and d states.

10.
Inorg Chem ; 51(14): 7569-78, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22765295

ABSTRACT

First-principles electronic structure calculations are presented on a variety of Au compounds and species--encompassing a wide range of formal oxidation states, coordination geometries, and chemical environments--in order to understand the potentially systematic behavior in the nature and energetics of d states that are implicated in catalytic activity. In particular, we monitor the position of the d-band center, which has been suggested to signal catalytic activity for reactions such as CO oxidation. We find a surprising absence of any kind of correlation between the formal oxidation state of Au and the position of the d-band center. Instead, we find that the center of the d band displays a nearly linear dependence on the degree of its filling, and this is a general relationship for Au irrespective of the chemistry or geometry of the particular Au compound. Across the compounds examined we find that even small calculated changes in the d-band filling result in a relatively large effect on the position of the d-band center. The results presented here have some important implications for the question of the catalytic activity of Au and indicate that the formal oxidation state is not a determining factor.

11.
J Am Chem Soc ; 133(9): 2801-3, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21319818

ABSTRACT

The morphology of small metal clusters can have a big impact on their electronic, magnetic, and chemical properties. This has been shown earlier, for example, for Au(20) clusters on MgO(001), where planar and tetrahedral geometries are possible for the gold atoms. While the planar geometry is more desirable for catalytic applications, it is disfavored in the usual situation. While earlier suggestions that have been made for tilting this balance in favor of the planar isomer are of considerable fundamental interest, they do not easily lend themselves to practical applications. Here, we suggest a conceptually simple but practicable way of achieving the same goal: viz., by doping the MgO substrate with Al atoms. We show, by performing density functional theory calculations, that this stabilizes the planar over the tetrahedral arrangement by an energy difference that is linearly proportional to the dopant concentration and is insensitive to the position of the dopant atom. The charge transferred to the Au cluster also depends monotonically on the doping concentration. This work is of interest for possible applications in the field of gold nanocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...