Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 47(14): 5187-5233, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29901663

ABSTRACT

After about three decades of development, the polyol process is now widely recognized and practised as a unique soft chemical method for the preparation of a large variety of nanoparticles which can be used in important technological fields. It offers many advantages: low cost, ease of use and, very importantly, already proven scalability for industrial applications. Among the different classes of inorganic nanoparticles which can be prepared in liquid polyols, metals were the first reported. This review aims to give a comprehensive account of the strategies used to prepare monometallic nanoparticles and multimetallic materials with tailored size and shape. As regards monometallic materials, while the preparation of noble as well as ferromagnetic metals is now clearly established, the scope of the polyol process has been extended to the preparation of more electropositive metals, such as post-transition metals and semi-metals. The potential of this method is also clearly displayed for the preparation of alloys, intermetallics and core-shell nanostructures with a very large diversity of compositions and architectures.

2.
RSC Adv ; 8(21): 11785-11798, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-35558550

ABSTRACT

ZnO-ZnS 1D hetero-nanostructures were prepared by an easy and scalable processing route. It consists of ZnO nanorod electrodeposition on ITO substrate and surface sulfidation by ion exchange in an aqueous Na2S solution. Increasing the treatment contact time (t c) from 8 to 48 h involves different ZnS growth mechanisms leading to different structural and microstructural rod characteristics, even if the overall size does not change significantly. Grazing X-ray diffraction, high-resolution microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy describe the outer surface layer as a poly- and nanocrystalline ZnS blende shell whose thickness and roughness increase with t c. The ZnO wurtzite-ZnS blende interface goes from continuous and dense, at short t c, to discontinuous and porous at long t c, indicating that ZnS formation proceeds in a more complex way than a simple S2-/O2- ion exchange over the treatment time. This feature has significant consequences for the photoelectrochemical performance of these materials when they are used as photoanodes in a typical light-assisted water splitting experiment. A photocurrent (J p) fluctuation of 45% for less than 5 min of operation is observed for the sample prepared with a long sulfidation time while it does not exceed 15% for that obtained with a short one, underlining the importance of the material processing conditions on the preparation of valuable photoanodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...