Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antibiotics (Basel) ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709077

ABSTRACT

Cryptococcus neoformans, a life-threatening human yeast pathogen, has the ability to produce melanin, which is one of the common virulence factors contributing to cryptococcal pathogenesis. This virulence factor is closely associated with the cryptococcal cell wall, specifically chitin and chitosan polysaccharides, a complex structure that is essential for maintaining cellular structure and integrity. In this study, we aim to investigate the effects of two stingless bee (SLB) propolis from Tetragonula laeviceps and Tetrigona melanoleuca against cell wall-associated melanin in C. neoformans, and its immune response in RAW 264.7 macrophage. The ethanolic extract of SLB propolis (EEP) has strongly exhibited anti-cryptococcal activity. Moreover, EEP from both sources reduced chitin/chitosan and melanin production against C. neoformans in a dose-dependent manner. Likewise, the mRNA expression level of CDA1, IPC1-PKC1 and LAC1 genes involved in the cryptococcal melanization pathway was significantly decreased at 2 mg/mL in EEP treatment. Additionally, pretreatment with EEP prior to yeast infection dramatically reduced intracellular replication of C. neoformans in RAW 264.7 macrophages in a dose-dependent manner. This study might be a new insight to use a natural powerful source, not only acting to target cell wall-associated molecules, but also being capable to explore a novel strategy by which dysregulation of these molecules leads to promote immunomodulatory activity.

2.
Article in English | MEDLINE | ID: mdl-31871479

ABSTRACT

Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.

3.
Microb Pathog ; 123: 296-303, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30041002

ABSTRACT

The present study was conducted to investigate the effects of a natural product from honeybees, named propolis, against Cryptococcus neoformans and its effect in the expression of putative virulence factors, such as capsular polysaccharides, melanin production and urease enzyme. Ethanol extract propolis (EEP) was first tested for its anti-cryptococcal activity and explored its impact on virulence factors in both phenotypes and enzyme activities. Moreover, the cryptococcal virulence genes were investigated using real time RT-PCR. The MIC value of EEP, 1 mg ml-1, displayed potent inhibition of C. neoformans cell viability. Of note is the high efficacy of sub-MIC concentrations (ranging from 0.5 to 0.125 mg ml-1) in decreasing the production of capsule, melanin, as well as laccase and urease enzyme activities. Importantly, EEP exhibited statistically decrease in the expression of gene-encoded virulence factors. In conclusion, EEP mediates C. neoformans growth inhibition and virulence factors by reducing the gene-encoding virulence-associated proteins and, thereby, disrupting the morphologic presence and attenuating their virulence. This study introduced EEP as regards anti-cryptococcal virulence factors activities; therefore, EEP would provide alternative ways of controlling the pathogenicity.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Propolis/pharmacology , Virulence Factors/metabolism , Animals , Antifungal Agents/chemistry , Bees/chemistry , Cryptococcosis/drug therapy , Cryptococcus neoformans/cytology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Fungal Capsules/drug effects , Fungal Polysaccharides/metabolism , Gene Expression Regulation, Fungal/drug effects , Kinetics , Laccase/metabolism , Melanins/metabolism , Microbial Sensitivity Tests , Microbial Viability/drug effects , Phenotype , Propolis/chemistry , Thailand , Urease/metabolism , Virulence/drug effects , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...