Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biomicrofluidics ; 18(2): 024107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38606014

ABSTRACT

The utilization of 3D cell culture for spheroid formation holds significant implications in cancer research, contributing to a fundamental understanding of the disease and aiding drug development. Conventional methods such as the hanging drop technique and other alternatives encounter limitations due to smaller drop volumes, leading to nutrient starvation and restricted culture duration. In this study, we present a straightforward approach to creating superhydrophobic paper cones capable of accommodating large volumes of culture media drops. These paper cones have sterility, autoclavability, and bacterial repellent properties. Leveraging these attributes, we successfully generate large spheroids of ovarian cancer cells and, as a proof of concept, conduct drug screening to assess the impact of carboplatin. Thus, our method enables the preparation of flexible superhydrophobic surfaces for laboratory applications in an expeditious manner, exemplified here through spheroid formation and drug screening demonstrations.

2.
Nat Commun ; 14(1): 5903, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737223

ABSTRACT

Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross ß amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes.


Subject(s)
Amyloid beta-Peptides , Cytochromes c , Urease , Amyloidogenic Proteins , Biocatalysis
3.
Talanta ; 245: 123428, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35427946

ABSTRACT

Interferon (IFN)-γ is a cytokine secreted by immune cells. The elevated levels of IFN-γ are an early indicator of multiple diseases such as tuberculosis and autoimmune diseases. This short review focuses on different sensing methods based on optical, electrochemical, and mechanical principles. We explain how specific biorecognition molecules such as antibodies and aptamers are employed in the sensing methods. We also compare different surface functionalization methods and their details. Although the review gives an overview of only IFN-γ sensing, the same strategies can be applied to sensing other analytes with appropriate modifications.


Subject(s)
Biosensing Techniques , Interferon-gamma , Point-of-Care Systems , Antibodies/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Humans , Interferon-gamma/analysis
4.
Langmuir ; 38(15): 4567-4577, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35394793

ABSTRACT

Aerosols and microdroplets are known to act as carriers for pathogens or vessels for chemical reactions. The natural occurrence of evaporation of these droplets has implications for the viability of pathogens or chemical processes. For example, it is important to understand how pathogens survive extreme physiochemical conditions such as confinement and osmotic stress induced by evaporation of aerosol droplets. Previously, larger evaporating droplets were proposed as model systems as the processes in the tiny aerosol droplets are difficult to image. In this context, we propose the concept of evaporation of capillary-clustered aqueous microdroplets dispersed in a thin oil layer. The configuration produces spatially segregated evaporation rates. It allows comparing the consequences of evaporation and its rate for processes occurring in droplets. As a proof of concept, we study the consequences of evaporation and its rate using Escherichia coli (E. coli) and Bacillus subtilis as model organisms. Our experiments indicate that the rate of evaporation of microdroplets is an important parameter in deciding the viability of contained microorganisms. With slow evaporation, E. coli could mitigate the osmotic stress by K+ ion uptake. Our method may also be applicable to other evaporating droplet systems, for example, microdroplet chemistry to understand the implications of evaporation rates.


Subject(s)
Escherichia coli , Microfluidics , Aerosols/chemistry , Water/chemistry
5.
Langmuir ; 36(28): 8137-8143, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32589843

ABSTRACT

Evaporation of colloidal drops on horizontal surfaces deposits the contained particles at the drop-edge producing radially symmetric ring-like stains. The symmetry in the particle deposition is broken when the drop is placed on a tilted surface due to the influence of gravity on the suspended particles and the drop itself. Using extremely small drops generated by electrospray, we explore cases where different mechanisms of particle transport dominate. We show that the asymmetric residues are formed as the gravity-induced effects compete with the capillary flow. Our results give a broad insight into the pattern formation of evaporating inclined drops.

6.
Soft Matter ; 16(5): 1342-1348, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31934709

ABSTRACT

Impact of drops on thin powder layers displaces the powder particles radially outward producing shallow craters with thick rims, for example, as observed on dust layers on the floor. Here, we report that the patterns formed on thin powder layers by drop impact are not limited to such crater-like ones. Instead, depending upon the layer properties, disc or disc-plus-ring shaped patterns are formed at the impact point. We show that air entrapment and micro-bubble formation during the drop impact result in the formation of such patterns. Based on high-speed imaging, scaling analyses, and measurements with various liquids and powder layers, we propose a mechanism for the formation of such patterns. The phenomenon that we report can open further investigations on drop impact on the granular matter.

7.
Anal Chem ; 90(12): 7127-7130, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29808992

ABSTRACT

Nanoscale channels and electrodes for electrochemical measurements exhibit extreme surface-to-volume ratios and a correspondingly high sensitivity to even weak degrees of surface interactions. Here, we exploit the potential-dependent reversible adsorption of outer-sphere redox species to modulate in space and time their concentration in a nanochannel under advective flow conditions. Induced concentration variations propagate downstream at a species-dependent velocity. This allows one to amperometrically distinguish between attomole amounts of species based on their time-of-flight. On-demand concentration pulse generation, separation, and detection are all integrated in a miniaturized platform.

8.
Adv Colloid Interface Sci ; 252: 38-54, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29310771

ABSTRACT

Evaporation of sessile droplets containing non-volatile solutes dispersed in a volatile solvent leaves behind ring-like solid stains. As the volatile species evaporates, pinning of the contact line gives rise to capillary flows that transport non-volatile solutes to the contact line. This phenomenon, called the coffee-ring effect, compromises the overall performance of industrially relevant manufacturing processes involving evaporation such as printing, biochemical analysis, manufacturing of nano-structured materials through colloidal and macromolecular patterning. Various approaches have been developed to suppress this phenomenon, which is otherwise difficult to avoid. The coffee-ring effect has also been leveraged to prepare new materials through convection induced assembly. This review underlines not only the strategies developed to suppress the coffee-ring effect but also sheds light on approaches to arrive at novel processes and materials. Working principles and applicability of these strategies are discussed together with a critical comparison.

9.
Faraday Discuss ; 193: 41-50, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27775135

ABSTRACT

The diffusive mass transport of individual redox molecules was probed experimentally in microfabricated nanogap electrodes. The residence times for molecules inside a well-defined detection volume were extracted and the resulting distribution was compared with quantitative analytical predictions from random-walk theory for the time of first passage. The results suggest that a small number of strongly adsorbing sites strongly influence mass transport at trace analyte levels.

10.
Soft Matter ; 11(36): 7207-13, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26264649

ABSTRACT

We study the influence of acoustic fields on the evaporative self-assembly of solute particles suspended inside sessile droplets of complex fluids. The self-assembly process often results in an undesirable ring-like heterogeneous residue, a phenomenon known as the coffee-ring effect. Here we show that this ring-like self-assembly can be controlled acoustically to form homogeneous disc-like or concentrated spot-like residues. The principle of our method lies in the formation of dynamic patterns of particles in acoustically excited droplets, which inhibits the evaporation-driven convective transport of particles towards the contact line. We elucidate the mechanisms of this pattern formation and also obtain conditions for the suppression of the coffee-ring effect. Our results provide a more general solution to suppress the coffee-ring effect without any physiochemical modification of the fluids, the particles or the surface, thus potentially useful in a broad range of industrial and analytical applications that require homogenous solute depositions.


Subject(s)
Acoustics , Solutions
11.
Anal Chem ; 87(4): 2161-9, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25514590

ABSTRACT

We exploit the mechanical action of surface acoustic waves (SAW) to differentially lyse human cancer cells in a chemical-free manner. The extent to which cells were disrupted is reported for a range of SAW parameters, and we show that the presence of 10 µm polystyrene beads is required to fully rupture cells and their nuclei. We show that SAW is capable of subcellular fractionation through the chemical-free isolation of nuclei from whole cells. The concentration of protein was assessed in lysates with a sensitive microfluidic antibody capture (MAC) chip. An antibody-based sandwich assay in a microfluidic microarray format was used to detect unlabeled human tumor suppressor protein p53 in crude lysates, without any purification step, with single-molecule resolution. The results are digital, enabling sensitive quantification of proteins with a dynamic range >4 orders of magnitude. For the conditions used, the efficiency of SAW-induced mechanical lysis was determined to be 12.9% ± 0.7% of that for conventional detergent-based lysis in yielding detectable protein. A range of possible loss mechanisms that could lead to the drop in protein yield are discussed. Our results show that the methods described here are amenable to an integrated point-of-care device for the assessment of tumor protein expression in fine needle aspirate biopsies.


Subject(s)
Cell Fractionation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Sound , Tumor Suppressor Protein p53/analysis , Cell Line, Tumor , Equipment Design , Humans
12.
J Phys Chem Lett ; 5(3): 636-40, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-26276621

ABSTRACT

Adsorption often dominates the response of nanofluidic systems due to their high surface-to-volume ratios. Here we harness this sensitivity to investigate the reversible adsorption of outer-sphere redox species at electrodes, a phenomenon that is easily overlooked in bulk measurements. We find that even though adsorption does not necessarily play a role in the electron-transfer process, such adsorption is nevertheless ubiquitous for the widely used outer-sphere species. We investigate the physical factors driving adsorption and find that this counterintuitive behavior is mediated by the anionic species in the supporting electrolyte, closely following the well-known Hofmeister series. Our results provide foundations both for theoretical studies of the underlying mechanisms and for contriving strategies to control adsorption in micro/nanoscale electrochemical transducers where surface effects are dominant.

13.
Article in English | MEDLINE | ID: mdl-24329359

ABSTRACT

Drops sandwiched between two substrates are often found in lab-on-chip devices based on digital microfluidics. We excite azimuthal oscillations of such drops by periodically modulating the contact line via ac electrowetting. By tuning the frequency of the applied voltage, several shape modes can be selected one by one. The frequency of the oscillations is half the frequency of the contact angle modulation by electrowetting, indicating a parametric excitation. The drop response to sinusoidal driving deviates substantially from sinusoidal behavior in a "stop and go" fashion. Although our simple theoretical model describes the observed behavior qualitatively, the resonances appear at lower frequencies than expected. Moreover, the oscillations produce a nonperiodic fluid transport within the drop with a typical velocity of 1 mm/s. In digital microfluidic devices, where the typical drop size is less than 1 mm, this flow can result in very fast mixing on the spot.

14.
ACS Nano ; 7(12): 10931-7, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24279688

ABSTRACT

Electrochemical detection of individual molecular tags in nanochannels may enable cost-effective, massively parallel analysis and diagnostics platforms. Here we demonstrate single-molecule detection of prototypical analytes in aqueous solution based on redox cycling in 40 nm nanogap transducers. These nanofluidic devices are fabricated using standard microfabrication techniques combined with a self-aligned approach that minimizes gap size and dead volume. We demonstrate the detection of three common redox mediators at physiological salt concentrations.


Subject(s)
Electrochemistry/methods , Nanoparticles/chemistry , Water/chemistry , Adsorption , Electrodes , Microfluidics , Microscopy, Electron, Scanning , Nanotechnology , Optics and Photonics , Oxidation-Reduction , Spectrophotometry , Surface Properties , Transducers
15.
Anal Chem ; 85(12): 6053-8, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23672408

ABSTRACT

Redox cycling between two electrodes separated by a narrow gap allows dramatic amplification of the faradaic current. Unlike conventional electrochemistry at a single electrode, however, the mass-transport-limited current is controlled by the diffusion coefficient of both the reduced and oxidized forms of the redox-active species being detected and, counterintuitively, by the redox state of molecules in the bulk solution outside the gap itself. Using a combination of finite-element simulations, analytical theory, and experimental validation, we elucidate the interplay between these interrelated factors. In so doing, we generalize previous results obtained in the context of scanning electrochemical microscopy and obtain simple analytical results that are generally applicable to experimental situations where efficient redox cycling takes place.

16.
J Colloid Interface Sci ; 390(1): 234-41, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23089595

ABSTRACT

We generate and study electroosmotic shear flow in microchannels. By chemically or electrically modifying the surface potential of the channel walls a shear flow component with controllable velocity gradient can be added to the electroosmotic flow caused by double layer effects at the channel walls. Chemical modification is obtained by treating the channel wall with a cationic polymer. In case of electric modification, we used gate electrodes embedded in the channel wall. By applying a voltage to the gate electrode, the zeta potential can be varied and a controllable, uniform shear stress can be applied to the liquid in the channel. The strength of the shear stress depends on both the gate voltage and the applied field which drives the electroosmotic shear flow. Although the stress range is still limited, such a microchannel device can be used in principle as an in situ micro-rheometer for lab on a chip purposes.


Subject(s)
Electroosmosis , Microfluidic Analytical Techniques , Models, Theoretical , Shear Strength , Rheology/instrumentation , Rheology/methods
17.
Biomicrofluidics ; 7(4): 44102, 2013.
Article in English | MEDLINE | ID: mdl-24404036

ABSTRACT

Electrowetting with alternate voltage (AC) creates azimuthal flow vortices inside sessile droplets. These flow vortices can be controlled by introducing pinning sites at the contact line. When the frequency of the applied AC voltage is gradually ramped from a few hundreds of hertz to a few tens of kilohertz the azimuthal flow vortices contract and move towards the contact line near the pinning site. Dispersed particles in the liquid are collected in the center of these vortices leading to an increase in the local particle concentration by up to more than one order of magnitude. We provide a qualitative explanation for symmetry of the flow patterns within the drops and discuss possible scenarios explaining the particle collection and preconcentration.

18.
Phys Rev Lett ; 109(11): 118302, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-23005685

ABSTRACT

We introduce all-electrical cross-correlation spectroscopy of molecular number fluctuations in nanofluidic channels. Our approach is based on a pair of nanogap electrochemical transducers located downstream from each other in the channel. When liquid is driven through this device, mesoscopic fluctuations in the local density of molecules are transported along the channel. We perform a time-of-flight measurement of these fluctuations by cross-correlating current-time traces obtained at the two detectors. Thereby we are able to detect ultralow liquid flow rates below 10 pL/min. This method constitutes the electrical equivalent of fluorescence cross-correlation spectroscopy.

19.
Electrophoresis ; 31(3): 563-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20119966

ABSTRACT

We study EOF through microchannels, made of glass or glass-PDMS, by displacing an electrolyte solution at given concentration with the same electrolyte at a different concentration via an external electric field. When a constant voltage is applied over the channel, the electric current through the channel varies during the displacement process. We propose a simple analytical model that describes the time dependence of the current regardless of the concentration ratio chosen. With this model, which is applicable beyond the Debye-Hückel limit, we are able to quantify the EOF velocity and to determine the surface charge on the microchannel walls from the measured current behavior, as well as the zeta potential at given local electrolyte concentration.


Subject(s)
Electrolytes/chemistry , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Algorithms , Dimethylpolysiloxanes/chemistry , Equipment Design , Glass/chemistry , Membrane Potentials , Microfluidics/methods , Nylons/chemistry , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...