Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257297

ABSTRACT

Ceratocarpus arenarius (Chenopodiaceae) is an under-investigated annual plant that occurs in dry areas stretching from eastern and south-eastern Europe to East Asia. This article presents the botanical characterization and examination of proximate parameters, minerals and cytotoxic activity of C. arenarius that grows wild in Kazakhstan. The results of morphological analysis using a light microscope, based on cross-sections of stems, roots and leaves, provide the necessary data to develop a regulatory document for this herbal substance as a raw material for use in the pharmaceutical, cosmetic and food industries. The investigated proximate characteristics included moisture content (6.8 ± 0.28%), ash (5.9 ± 0.40%), fat (12.5 ± 21.28%) and protein (392.85 ± 25.50). The plant is also rich in minerals (mg/100 g dry weight); Na (20.48 ± 0.29), K (302.73 ± 1.15), Zn (4.45 ± 0.35), Fe (1.18 ± 0.03), Cu (0.11 ± 0.02), Mn (0.76 ± 0.01), Ca (131.23 ± 0.09) and Mg (60.69 ± 0.72). The ethanolic extract of C. arenarius showed no acute toxicity against the brine shrimp nauplii.


Subject(s)
Antineoplastic Agents , Chenopodiaceae , Animals , Minerals , Artemia , Asia, Eastern
2.
J Transl Med ; 20(1): 630, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36585670

ABSTRACT

Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.


Subject(s)
Antineoplastic Agents , Cucurbitacins , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Cucurbitacins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Plant Extracts
3.
Front Pharmacol ; 12: 665031, 2021.
Article in English | MEDLINE | ID: mdl-34220504

ABSTRACT

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer's disease, Amyloid ß peptide, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...