Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Med ; 46(9): e889-e896, 2018 09.
Article in English | MEDLINE | ID: mdl-29957708

ABSTRACT

OBJECTIVES: To assess the relationship between microcirculatory perfusion and multiple organ dysfunction syndrome in patients following traumatic hemorrhagic shock. DESIGN: Multicenter prospective longitudinal observational study. SETTING: Three U.K. major trauma centers. PATIENTS: Fifty-eight intubated and ventilated patients with traumatic hemorrhagic shock. INTERVENTIONS: Sublingual incident dark field microscopy was performed within 12 hours of ICU admission (D0) and repeated 24 and 48 hours later. Cardiac output was assessed using oesophageal Doppler. Multiple organ dysfunction syndrome was defined as Serial Organ Failure Assessment score greater than or equal to 6 at day 7 post injury. MEASUREMENTS AND MAIN RESULTS: Data from 58 patients were analyzed. Patients had a mean age of 43 ± 19 years, Injury Severity Score of 29 ± 14, and initial lactate of 7.3 ± 6.1 mmol/L and received 6 U (interquartile range, 4-11 U) of packed RBCs during initial resuscitation. Compared with patients without multiple organ dysfunction syndrome at day 7, patients with multiple organ dysfunction syndrome had lower D0 perfused vessel density (11.2 ± 1.8 and 8.6 ± 1.8 mm/mm; p < 0.01) and microcirculatory flow index (2.8 [2.6-2.9] and 2.6 [2.2-2.8]; p < 0.01) but similar cardiac index (2.5 [± 0.6] and 2.1 [± 0.7] L/min//m; p = 0.11). Perfused vessel density demonstrated the best discrimination for predicting subsequent multiple organ dysfunction syndrome (area under curve 0.87 [0.76-0.99]) compared with highest recorded lactate (area under curve 0.69 [0.53-0.84]), cardiac index (area under curve 0.66 [0.49-0.83]) and lowest recorded systolic blood pressure (area under curve 0.54 [0.39-0.70]). CONCLUSIONS: Microcirculatory hypoperfusion immediately following traumatic hemorrhagic shock and resuscitation is associated with increased multiple organ dysfunction syndrome. Microcirculatory variables are better prognostic indicators for the development of multiple organ dysfunction syndrome than more traditional indices. Microcirculatory perfusion is a potential endpoint of resuscitation following traumatic hemorrhagic shock.


Subject(s)
Multiple Organ Failure/etiology , Shock, Hemorrhagic/complications , Adult , Aged , Female , Humans , Longitudinal Studies , Male , Microcirculation , Middle Aged , Multiple Organ Failure/physiopathology , Prospective Studies , Regional Blood Flow , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/physiopathology , Wounds and Injuries/complications
2.
BMJ Open ; 6(12): e014162, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28003301

ABSTRACT

OBJECTIVES: Sublingual microcirculatory monitoring for traumatic haemorrhagic shock (THS) may predict clinical outcomes better than traditional blood pressure and cardiac output, but is not usually performed until the patient reaches the intensive care unit (ICU), missing earlier data of potential importance. This pilot study assessed for the first time the feasibility and safety of sublingual video-microscopy for THS in the emergency department (ED), and whether it yields useable data for analysis. SETTING: A safety and feasibility assessment was undertaken as part of the prospective observational MICROSHOCK study; sublingual video-microscopy was performed at the UK-led Role 3 medical facility at Camp Bastion, Afghanistan, and in the ED in 3 UK Major Trauma Centres. PARTICIPANTS: There were 15 casualties (2 military, 13 civilian) who presented with traumatic haemorrhagic shock with a median injury severity score of 26. The median age was 41; the majority (n=12) were male. The most common injury mechanism was road traffic accident. PRIMARY AND SECONDARY OUTCOME MEASURES: Safety and feasibility were the primary outcomes, as measured by lack of adverse events or clinical interruptions, and successful acquisition and storage of data. The secondary outcome was the quality of acquired video clips according to validated criteria, in order to determine whether useful data could be obtained in this emergency context. RESULTS: Video-microscopy was successfully performed and stored for analysis for all patients, yielding 161 video clips. There were no adverse events or episodes where clinical management was affected or interrupted. There were 104 (64.6%) video clips from 14 patients of sufficient quality for analysis. CONCLUSIONS: Early sublingual microcirculatory monitoring in the ED for patients with THS is safe and feasible, even in a deployed military setting, and yields videos of satisfactory quality in a high proportion of cases. Further investigations of early microcirculatory behaviour in this context are warranted. TRIAL REGISTRATION NUMBER: NCT02111109.


Subject(s)
Emergency Medical Services/methods , Emergency Service, Hospital , Microcirculation , Monitoring, Physiologic/methods , Mouth Floor , Shock, Hemorrhagic/physiopathology , Wounds and Injuries/complications , Adult , Afghanistan , Emergency Medical Services/standards , Feasibility Studies , Female , Health Facilities , Humans , Injury Severity Score , Male , Microscopy, Video/standards , Middle Aged , Military Personnel , Patient Safety , Pilot Projects , Prospective Studies , Regional Blood Flow , Shock, Hemorrhagic/etiology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...