Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Syst ; 46(11): 72, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36156743

ABSTRACT

Recent use of noninvasive and continuous hemoglobin (SpHb) concentration monitor has emerged as an alternative to invasive laboratory-based hematological analysis. Unlike delayed laboratory based measures of hemoglobin (HgB), SpHb monitors can provide real-time information about the HgB levels. Real-time SpHb measurements will offer healthcare providers with warnings and early detections of abnormal health status, e.g., hemorrhagic shock, anemia, and thus support therapeutic decision-making, as well as help save lives. However, the finger-worn CO-Oximeter sensors used in SpHb monitors often get detached or have to be removed, which causes missing data in the continuous SpHb measurements. Missing data among SpHb measurements reduce the trust in the accuracy of the device, influence the effectiveness of hemorrhage interventions and future HgB predictions. A model with imputation and prediction method is investigated to deal with missing values and improve prediction accuracy. The Gaussian process and functional regression methods are proposed to impute missing SpHb data and make predictions on laboratory-based HgB measurements. Within the proposed method, multiple choices of sub-models are considered. The proposed method shows a significant improvement in accuracy based on a real-data study. Proposed method shows superior performance with the real data, within the proposed framework, different choices of sub-models are discussed and the usage recommendation is provided accordingly. The modeling framework can be extended to other application scenarios with missing values.


Subject(s)
Hemoglobins , Oximetry , Hemoglobins/analysis , Hemorrhage , Humans , Monitoring, Physiologic/methods , Normal Distribution
2.
J Biomed Inform ; 126: 103975, 2022 02.
Article in English | MEDLINE | ID: mdl-34906736

ABSTRACT

Uncontrolled hemorrhage is a leading cause of preventable death among patients with trauma. Early recognition of hemorrhage can aid in the decision to administer blood transfusion and improve patient outcomes. To provide real-time measurement and continuous monitoring of hemoglobin concentration, the non-invasive and continuous hemoglobin (SpHb) measurement device has drawn extensive attention in clinical practice. However, the accuracy of such a device varies in different scenarios, so the use is not yet widely accepted. This article focuses on using statistical nonparametric models to improve the accuracy of SpHb measurement device by considering measurement bias among instantaneous measurements and individual evolution trends. In the proposed method, the robust locally estimated scatterplot smoothing (LOESS) method and the Kernel regression model are considered to address those issues. Overall performance of the proposed method was evaluated by cross-validation, which showed a substantial improvement in accuracy with an 11.3% reduction of standard deviation, 23.7% reduction of mean absolute error, and 28% reduction of mean absolute percentage error compared to the original measurements. The effects of patient demographics and initial medical condition were analyzed and deemed to not have a significant effect on accuracy. Because of its high accuracy, the proposed method is highly promising to be considered to support transfusion decision-making and continuous monitoring of hemoglobin concentration. The method also has promise for similar advancement of other diagnostic devices in healthcare.


Subject(s)
Hemoglobins , Oximetry , Hematologic Tests , Hemoglobins/analysis , Hemorrhage , Humans , Oximetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...