Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Stomatol Oral Maxillofac Surg ; : 101921, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795909

ABSTRACT

BACKGROUND: Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS: Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS: The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS: Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.

3.
Sci Rep ; 14(1): 8127, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584156

ABSTRACT

The traditional lecture-based learning (LBL) method is facing great challenges due to its low efficiency and single proceeding form. We designed a PRI-E learning mode that combined and modified problem-based, case-based, and evidence-based learning with a step-by-step approach. We evaluated the practical learning outcomes of using the PRI-E mode by comparing it with traditional lecture-based learning in oral and maxillofacial oncology education. "PRI-E" consists of the first letters of the English words Passion, Research, Innovation, and Education, and it means "the best Education". This prospective randomized controlled trial included 40 participants. We evenly divided the participants into the PRI-E (n = 20) and LBL group (n = 20) based on the entrance test scores. The same staff group designed and then taught the learning content with different group measures. The evaluation included the final test scores and questionnaire assessments. Without affecting the examination results, the PRI-E teaching method was more satisfactory and popular with participants in terms of ability development and classroom participation. Enacting the PRI-E teaching method required more time, but this did not affect its popularity among the participants. Compared with the LBL learning mode, the PRI-E learning mode was more organized and efficient in oral and maxillofacial oncology education without affecting academic performance. This model has a high degree of satisfaction, which is conducive to training students' comprehensive ability.


Subject(s)
Learning , Problem-Based Learning , Humans , Problem-Based Learning/methods , Prospective Studies , Students , Educational Measurement
4.
Br J Oral Maxillofac Surg ; 62(3): 290-298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461076

ABSTRACT

Ameloblastoma (AM) is characterised by local aggressiveness and bone resorption. To our knowledge, the proteomic profile of bone adjacent to AM has not previously been explored. We therefore looked at the differential proteins in cancellous bone (CB) adjacent to AM and normal CB from the mandible. CB proteins were extracted, purified, quantified, and analysed by liquid chromatography-mass spectrometry (LC-MS) using samples from five patients with AM. These proteins were further investigated using gene ontology for additional functional annotation and enrichment. Proteins that met the screening requirements of expression difference ploidy > 1.5-fold (upregulation and downregulation) and p < 0.05 were subsequently deemed differential proteins. Immunohistochemical staining was performed to confirm the above findings. Compared with normal mandibular CB, 151 differential proteins were identified in CB adjacent to the mandibular AM. These were mainly linked to cellular catabolic processes, lipid metabolism, and fatty acids (FA) metabolism. LC-MS and immunohistochemistry showed that CD36 was one of the notably decreased proteins in CB bordering the AM compared with normal mandibular CB (p = 0.0066 and p = 0.0095, respectively). CD36 expression in CB correlates with bone remodelling in AM, making CD36 a viable target for therapeutic approaches.


Subject(s)
Ameloblastoma , Bone Remodeling , CD36 Antigens , Proteomics , Humans , Ameloblastoma/metabolism , Ameloblastoma/pathology , Bone Remodeling/physiology , CD36 Antigens/metabolism , CD36 Antigens/analysis , Mandibular Neoplasms/metabolism , Mandibular Neoplasms/pathology , Chromatography, Liquid , Cancellous Bone/metabolism , Lipid Metabolism/physiology , Adult , Female , Male , Mandible/metabolism , Mass Spectrometry , Fatty Acids/metabolism , Middle Aged , Proteome/analysis
5.
Oral Dis ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424736

ABSTRACT

OBJECTIVES: Ameloblastoma (AM), a locally aggressive tumor with extensive growth capacity, causes significant damage to the jaw and affects facial appearance. Although the high prevalence of BRAF V600E mutation in AM is known, its specific impacts on patients with AM remain unclear. Thus, the present study investigated the role of BRAF V600E mutation, thereby focusing on its impact on AM invasion and growth. MATERIALS AND METHODS: Immunohistochemical analysis was used to compare BRAF V600E, MMP2, MMP9, and Ki-67 expressions in AM (n = 49), normal oral mucosa (NOM) (n = 10), and odontogenic keratocyst (OKC) (n = 15) tissues. AM was further classified according to the presence or absence of BRAF V600E. The relationship between BRAF V600E and invasion as well as growth was evaluated. In addition, correlation analysis was performed using immunohistochemistry and confirmed via double-labeling immunofluorescence. Finally, comparative analyses using mass spectrometry, immunohistochemistry, and immunofluorescence were performed to explore and identify underlying mechanisms. RESULTS: AM exhibited a higher incidence of BRAF V600E mutation than NOM and OKC. BRAF V600E expression was positively correlated with the invasion-associated proteins MMP2 and MMP9 and the growth-related protein Ki-67. Proteomic data revealed that BRAF V600E primarily activates the MAPK signaling pathway in AM, particularly driving the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). CONCLUSIONS: In summary, the findings suggested that the BRAF V600E mutation enhances the invasion and growth abilities of AM via the MAPK/ERK signaling pathway. Thus, targeting BRAF V600E or the MAPK/ERK pathway may be a potential AM therapy.

6.
J Oral Pathol Med ; 52(8): 766-776, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549038

ABSTRACT

BACKGROUND: Salivary gland pleomorphic adenoma (SPA) is a common neoplasm of salivary glands that displays remarkable histological diversity. Previous studies have demonstrated the involvement of gene rearrangements and cytoskeleton-remodeling-related myoepithelial cells in SPA tumorigenesis. Cytoskeleton remodeling is necessary for epithelial-mesenchymal transition (EMT), a key process in tumor progression. However, the heterogeneity of tumor cells and cytoskeleton remodeling in SPA has not been extensively investigated. METHODS: An analysis of single-cell RNA sequencing (scRNA-seq) was performed on 27 810 cells from two donors with SPA. Bioinformatic tools were used to assess differentially expressed genes, cell trajectories, and intercellular communications. Immunohistochemistry and double immunofluorescence staining were used to demonstrate FOXC1 and MYLK expression in SPA tissues. RESULTS: Our analysis revealed five distinct cell subtypes within the tumor cells of SPA, indicating a high level of intra-lesional heterogeneity. Cytoskeleton-remodeling-related genes were highly enriched in subtype 3 of the tumor cells, which showed a close interaction with mesenchymal cells. We found that tumoral FOXC1 expression was closely related to MYLK expression in the tumor cells of SPA. CONCLUSION: Tumor cells enriched with cytoskeleton-remodeling-related genes play a crucial role in SPA development, and FOXC1 may partially regulate this process.


Subject(s)
Adenoma, Pleomorphic , Salivary Gland Neoplasms , Humans , Adenoma, Pleomorphic/pathology , Salivary Gland Neoplasms/pathology , Salivary Glands/metabolism , Sequence Analysis, RNA
7.
BMC Oral Health ; 23(1): 454, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37415178

ABSTRACT

BACKGROUND: Odontogenic keratocyst (OKC) is a relatively common odontogenic lesion characterized by local invasion in the maxillary and mandibular bones. In the pathological tissue slices of OKC, immune cell infiltrations are frequently observed. However, the immune cell profile and the molecular mechanism for immune cell infiltration of OKC are still unclear. We aimed to explore the immune cell profile of OKC and to explore the potential pathogenesis for immune cell infiltration in OKC. METHODS: The microarray dataset GSE38494 including OKC and oral mucosa (OM) samples were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in OKC were analyzed by R software. The hub genes of OKC were performed by protein-protein interaction (PPI) network. The differential immune cell infiltration and the potential relationship between immune cell infiltration and the hub genes were performed by single-sample gene set enrichment analysis (ssGSEA). The expression of COL1A1 and COL1A3 were confirmed by immunofluorescence and immunohistochemistry in 17 OKC and 8 OM samples. RESULTS: We detected a total of 402 differentially expressed genes (DEGs), of which 247 were upregulated and 155 were downregulated. DEGs were mainly involved in collagen-containing extracellular matrix pathways, external encapsulating structure organization, and extracellular structure organization. We identified ten hub genes, namely FN1, COL1A1, COL3A1, COL1A2, BGN, POSTN, SPARC, FBN1, COL5A1, and COL5A2. A significant difference was observed in the abundances of eight types of infiltrating immune cells between the OM and OKC groups. Both COL1A1 and COL3A1 exhibited a significant positive correlation with natural killer T cells and memory B cells. Simultaneously, they demonstrated a significant negative correlation with CD56dim natural killer cells, neutrophils, immature dendritic cells, and activated dendritic cells. Immunohistochemistry analysis showed that COL1A1 (P = 0.0131) and COL1A3 (P < 0.001) were significantly elevated in OKC compared with OM. CONCLUSIONS: Our findings provide insights into the pathogenesis of OKC and illuminate the immune microenvironment within these lesions. The key genes, including COL1A1 and COL1A3, may significantly impact the biological processes associated with OKC.


Subject(s)
Odontogenic Cysts , Odontogenic Tumors , Humans , Mouth Mucosa , Odontogenic Cysts/genetics , Computational Biology , Tumor Microenvironment
9.
J Clin Med ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36983174

ABSTRACT

Surgery with the assistance of conventional radiotherapy, chemotherapy and immunotherapy is the basis for head and neck squamous cell carcinoma (HNSCC) treatment. However, with these treatment modalities, the recurrence and metastasis of tumors remain at a high level. Increasingly, the evidence indicates an excellent anti-tumor effect of chimeric antigen receptor T (CAR-T) cells in hematological malignancy treatment, and this novel immunotherapy has attracted researchers' attention in HNSCC treatment. Although several clinical trials have been conducted, the weak anti-tumor effect and the side effects of CAR-T cell therapy against HNSCC are barriers to clinical translation. The limited choices of targeting proteins, the barriers of CAR-T cell infiltration into targeted tumors and short survival time in vivo should be solved. In this review, we introduce barriers of CAR-T cell therapy in HNSCC. The limitations and current promising strategies to overcome barriers in solid tumors, as well as the applications for HNSCC treatment, are covered. The perspectives of CAR-T cell therapy in future HNSCC treatment are also discussed.

10.
Biomolecules ; 13(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36830672

ABSTRACT

BACKGROUND: The CAV family, especially CAV1 and CAV2, is significantly associated with tumor development. In this study, we aimed to explore the pathogenic and prognostic roles of CAV1 and CAV2 in head and neck squamous cell carcinoma (HNSCC) through bioinformatic analysis and verified in human tissue. METHODS: We analyzed expression profiles of CAV1 and CAV2 in HNSCC and in normal tissues via data from The Cancer Genome Altas. Prognostic significance was examined by Kaplan-Meier survival curve obtained from the Xena browser together with Cox regression analysis. Co-expressed genes were uploaded to GeneMANIA and applied to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, showing interaction networks. Signaling pathways of CAV1 and CAV2 in HNSCC were analyzed by Gene Set Enrichment Analysis to elucidate potential regulatory mechanisms. Gene-drug interaction network was explored via Comparative Toxicogenomics Database. Immunohistochemistry was performed to verify theoretical results. RESULTS: Compared with normal tissues, expression levels of CAV1 and CAV2 were remarkably higher in HNSCC (p < 0.0001), which independently implies poor OS (CAV1: HR: 1.146, p = 0.027; CAV2: HR: 1.408, p = 0.002). Co-expressed genes (PXN, ITGA3, TES, and MET) were identified and analyzed by FunRich with CAV1 and CAV2, revealing a significant correlation with focal adhesion (p < 0.001), which has a vital influence on cancer progression. GSEA also showed cellular protein catabolic process (ES = 0.42) and proteasome complex (ES = 0.72), which is a key degradation system for proteins involved in oxidatively damaging and cell cycle and transcription, closely correlated with high expression of CAV2 in HNSCC. More importantly, we found the relationship between different immune cell infiltration degrees in the immune micro-environment in HNSCC and expression levels of CAV1/CAV2 (p < 0.0001). Gene-drug interaction network was checked via CTD. Moreover, tissue microarrays verified higher expression levels of CAV1/CAV2 in HNSCC (p < 0.0001), and the high expression subgroup indicated significantly poorer clinical outcomes (p < 0.05). CONCLUSIONS: The results revealed that CAV1 and CAV2 are typically upregulated in HNSCC and might predict poor prognosis.


Subject(s)
Computational Biology , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Prognosis , Kaplan-Meier Estimate , Head and Neck Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Tumor Microenvironment
12.
Oral Dis ; 29(8): 3420-3432, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35765210

ABSTRACT

OBJECTIVES: Various types of cells comprising a complex and diverse cell population are required for the biological activities of odontogenic keratocyst (OKC). Immune and non-immune cells collaborate via cytokine- or chemokine-mediated communication and direct cell-cell interactions. This study aimed to characterize the immune ecosystem and understand the potential chemotactic role of OKC fibroblasts in immune cell migration. MATERIALS AND METHODS: Mass cytometry of 41 markers was employed for the classification of OKC cells from six OKC samples. Immunofluorescence staining and single-cell RNA sequencing (GSE176351) were used for the detection of fibroblast subpopulations. Enzyme-linked immunosorbent assay and immunofluorescence staining were employed for chemokine detection in hypoxia- and/or HIF-1α inhibitor-treated OKC fibroblasts and tissues. Chemotaxis assay was employed to determine the chemotactic effect of fibroblasts via co-culture with peripheral blood mononuclear cells. A cell communication network was constructed based on the single-cell RNA sequencing data. RESULTS: The characterization of the immune cell types of OKC evidenced the enrichment of macrophages, neutrophils and B cells. The majority (41.5%) of fibroblast subsets consisted of chemokine ligand-enriched myofibroblasts. The activation of the HIF-1α signaling pathway in fibroblasts was associated with chemokine release. The chemokines released by OKC fibroblasts remarkably promoted the migration of peripheral blood mononuclear cells in the co-culture system. Close interactions between myofibroblasts and immune cells were validated by cell-cell interaction analysis. Increased RANKL expression was detected in OKC fibroblasts in the co-culture system with peripheral blood mononuclear cells. CONCLUSIONS: Our results provided deep insights into the immune ecosystem and highlighted the potential chemotactic effects of chemokine-enriched myofibroblasts within OKCs. The close interaction between immune cells and fibroblasts demonstrated in this study may be responsible for the osteoclastogenic effects of OKC fibroblasts.


Subject(s)
Leukocytes, Mononuclear , Odontogenic Cysts , Humans , Leukocytes, Mononuclear/metabolism , Ecosystem , Odontogenic Cysts/genetics , Chemokines , Single-Cell Analysis
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-972228

ABSTRACT

Objective@# To discuss the correlation between the extraction timing of mesiodens and the orthodontic treatment duration of its eruption-related complications in children to provide a reference for the clinic.@*Methods @#The mesiodentes of 187 children were classified as eruption type (typeⅠ), dental crown impacted type (type Ⅱ), interdental impacted type (type Ⅲ), and dental root impacted type (type Ⅳ). According to the timing of extraction, mesiodentes in typeⅠ, type Ⅲ, and type Ⅳ were divided into Groups A: before the eruption of the adjacent central incisor and B: after the eruption of the adjacent central incisor. Mesiodentes in type Ⅱ were divided into Group A: before the eruption of the contralateral central incisor and B: after the eruption of the contralateral central incisor. Eruption-related complications and orthodontic treatment durations caused by mesiodens were statistically analyzed. @*Results @# There were 106 cases of displacement, 28 cases of failed eruption, 27 cases of tooth rotation, and 26 cases of individual cross-bite among the eruption-related complications caused by mesiodens. The mean orthodontic treatment cycle in Group A of type Ⅰ (7.07 ± 2.45 month), Group A of type Ⅱ (6.57 ± 1.12 month), and Group A of type Ⅲ (6.95 ± 2.52 month) were lower than that in Group B of type Ⅰ (9.67 ± 3.04 month), Group B of type Ⅱ (10.25 ± 1.29 month), and Group B of type Ⅲ (9.33 ± 3.26 month), and the differences were statistically significant (P<0.01). Meanwhile, there was no significant difference in the mean orthodontic treatment duration between Groups A (6.00 ± 0.94 month) and B (6.33 ± 0.80 month) of type Ⅳ (P>0.05).@*Conclusion@# In most cases, the mesiodens are removed before the eruption of the adjacent central incisor, which can reduce the duration of orthodontic treatment for eruption-related complications in children.

14.
Front Oncol ; 12: 943945, 2022.
Article in English | MEDLINE | ID: mdl-36452497

ABSTRACT

Hypoxia plays a critical role in head and neck squamous cell carcinoma (HNSCC) prognosis. However, till now, robust and reliable hypoxia-related prognostic signatures have not been established for an accurate prognostic evaluation in HNSCC patients. This article focused on establishing a risk score model to evaluate the prognosis and guide treatment for HNSCC patients. RNA-seq data and clinical information of 502 HNSCC patients and 44 normal samples were downloaded from The Cancer Genome Atlas (TCGA) database. 433 samples from three Gene Expression Omnibus (GEO) datasets were incorporated as an external validation cohort. In the training cohort, prognostic-related genes were screened and LASSO regression analyses were performed for signature establishment. A scoring system based on SRPX, PGK1, STG1, HS3ST1, CDKN1B, and HK1 showed an excellent prediction capacity for an overall prognosis for HNSCC patients. Patients were divided into high- and low-risk groups, and the survival status of the two groups exhibited a statistically significant difference. Subsequently, gene set enrichment analysis (GSEA) was carried out to explore the underlying mechanisms for the prognosis differences between the high- and low-risk groups. The tumor immune microenvironment was evaluated by CIBERSORT, ESTIMATE, TIDE, and xCell algorithm, etc. Then, we explored the relationships between this prognostic model and the levels of immune checkpoint-related genes. Cox regression analysis and nomogram plot indicated the scoring system was an independent predictor for HNSCC. Moreover, a comparison of predictive capability has been made between the present signature and existing prognostic signatures for HNSCC patients. Finally, we detected the expression levels of proteins encoded by six-HRGs via immunohistochemical analysis in tissue microarray. Collectively, a novel integrated signature considering both HRGs and clinicopathological parameters will serve as a prospective candidate for the prognostic evaluation of HNSCC patients.

15.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361568

ABSTRACT

Lymph node metastasis is associated with poor prognosis of oral squamous cell carcinoma (OSCC), and few studies have explored the relevance of postoperative lymphatic drainage (PLD) in metastatic OSCC. Alpha-enolase (ENO1) is a metabolic enzyme, which is related to lymphatic metastasis of OSCC. However, the role of ENO1 in PLD in metastatic OSCC has not been elucidated. Herein, we collected lymphatic drainage after lymphadenectomy between metastatic and non-metastatic lymph nodes in OSCC patients to investigate the relationship between ENO1 expression and metastasis, and to identify the proteins which interacted with ENO1 in PLD of patients with metastatic OSCC by MS/GST pulldown assay. Results revealed that the metabolic protein apolipoprotein C-III (ApoC3) was a novel partner of ENO1. The ENO1 bound to ApoC3 in OSCC cells and elicited the production of interleukin (IL)-8, as demonstrated through a cytokine antibody assay. We also studied the function of IL-8 on Jurkat T cells co-cultured with OSCC cells in vitro. Western blot analysis was applied to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Mechanistically, OSCC cells activated the STAT3 signaling pathway on Jurkat T cells through IL-8 secretion, promoted apoptosis, and inhibited the proliferation of Jurkat T cells. Collectively, these findings illuminate the molecular mechanisms underlying the function of ENO1 in metastasis OSCC and provide new strategies for targeting ENO1 for OSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , STAT3 Transcription Factor/metabolism , Apolipoprotein C-III , Interleukin-8/metabolism , Squamous Cell Carcinoma of Head and Neck , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , Phosphopyruvate Hydratase/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Biomarkers, Tumor
16.
J Cell Mol Med ; 26(24): 5955-5965, 2022 12.
Article in English | MEDLINE | ID: mdl-36448260

ABSTRACT

Tumour cell-secreted microvesicles (MVs) contribute immensely to tumour progression. However, the role of tumoral salivary MVs in oral squamous cell carcinoma (OSCC) remains unclear. Herein, we elucidated the role of non-apoptotic salivary tumoral MVs in OSCC development, especially relating to the migration ability. We purified and compared non-apoptotic salivary tumoral MVs from 63 OSCC patients and orthotopic OSCC mice model. Next, we compared the protein difference between apoptotic and non-apoptotic MVs by Western blot, proteomics and flow cytometry from saliva and CAL27 cells. Finally, we collected the non-apoptotic MVs and co-cultured with normal oral epithelial cells, the migration ability was examined by wound healing assay and Western blot assay. Our results indicated that the levels of non-apoptotic tumoral S-MVs were significantly higher in OSCC patients with T3 to T4 stages than in patients with T1 to T2 stages or healthy donors. In OSCC mice model, we found elevations of non-apoptotic tumoral MVs associated with tumoral volume. EGFR overexpression increased the generation of non-apoptotic tumoral MVs which could significantly promote normal epithelial cell migration. In conclusion, elevated levels of non-apoptotic tumoral S-MVs are associated with clinicopathologic features of OSCC patients, implying that non-apoptotic tumoral S-MVs are a potential progressive marker of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Cell-Derived Microparticles , Mouth Neoplasms , Mice , Animals , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Cell-Derived Microparticles/metabolism , Saliva/metabolism , Proteomics , Biomarkers, Tumor/metabolism
17.
Biomed Res Int ; 2022: 9453270, 2022.
Article in English | MEDLINE | ID: mdl-35941973

ABSTRACT

Background: Interleukin 8 (IL-8) is a chemotactic cytokine released by various cells including leukocytes, endothelial cells, and epithelial cells. IL-8 has multiple functions in inflammation, tumour invasion, or angiogenesis. Human odontogenic cystic lesions are chronic and frequently inflamed. Tissue-derived extracellular vesicles (Ti-EVs) are widely present in various tissues and could more accurately reflect the characteristics of the primary tissue. However, the involvement of IL-8 in Ti-EVs of human odontogenic lesions is still unclear. This study aimed to explore the expression of IL-8 in Ti-EVs of human odontogenic lesions and the potential roles of Ti-EVs that carried IL-8. Methods: Fresh tissue samples of dentigerous cyst (DC, n = 5) and odontogenic keratocyst (OKC, n = 5) were collected for Ti-EVs isolation. Ti-EVs were characterised by transmission electron microscopy and nano-flow cytometry analysis. The cytokine profile of Ti-EVs was explored by cytokine antibody array. The IL-8 expression was examined by immunochemical staining in tissue of odontogenic lesions (DC, n =12; OKC, n =28). Antioxidants (N-acetyl-L-cysteine and diphenyleneiodonium) were employed to treat HaCaT cells, and the expression of IL-8 was detected by enzyme-linked immunosorbent assay. The gene expression of MMP9 was explored by quantitative real-time polymerase chain reaction in co-culture system of fibroblasts of OKC with Ti-EVs. Results: Compared with DC, the expression of IL-8 in Ti-EVs and fixed tissue specimens of OKC was markedly upregulated. The antioxidants decreased the expression level of IL-8 protein in the supernatant of HaCaT cells. The Ti-EVs treatment (10 µg/ml) of fibroblasts significantly induced the MMP9 mRNA expressions in OKC fibroblasts. Conclusions: IL-8 was upregulated in Ti-EVs of OKC and might be involved in the tissue destruction of OKC.


Subject(s)
Dentigerous Cyst , Interleukin-8/metabolism , Odontogenic Cysts , Odontogenic Tumors , Dentigerous Cyst/metabolism , Dentigerous Cyst/pathology , Endothelial Cells/metabolism , Humans , Interleukin-8/genetics , Matrix Metalloproteinase 9 , Odontogenic Cysts/metabolism
18.
MedComm (2020) ; 3(2): e124, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35356799

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.

19.
J Extracell Vesicles ; 10(14): e12175, 2021 12.
Article in English | MEDLINE | ID: mdl-34918479

ABSTRACT

Extracellular vesicles (EVs) are lipid-bilayer membrane structures secreted by most cell types. EVs act as messengers via the horizontal transfer of lipids, proteins, and nucleic acids, and influence various pathophysiological processes in both parent and recipient cells. Compared to EVs obtained from body fluids or cell culture supernatants, EVs isolated directly from tissues possess a number of advantages, including tissue specificity, accurate reflection of tissue microenvironment, etc., thus, attention should be paid to tissue-derived EVs (Ti-EVs). Ti-EVs are present in the interstitium of tissues and play pivotal roles in intercellular communication. Moreover, Ti-EVs provide an excellent snapshot of interactions among various cell types with a common histological background. Thus, Ti-EVs may be used to gain insights into the development and progression of diseases. To date, extensive investigations have focused on the role of body fluid-derived EVs or cell culture-derived EVs; however, the number of studies on Ti-EVs remains insufficient. Herein, we summarize the latest advances in Ti-EVs for cancers and non-cancer diseases. We propose the future application of Ti-EVs in basic research and clinical practice. Workflows for Ti-EV isolation and characterization between cancers and non-cancer diseases are reviewed and compared. Moreover, we discuss current issues associated with Ti-EVs and provide potential directions.


Subject(s)
Extracellular Vesicles/metabolism , Neoplasms/pathology , Tumor Microenvironment/physiology , Humans
20.
J Mol Histol ; 52(3): 511-520, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33394292

ABSTRACT

Cav3.1, a subfamily of T-type calcium channel, is overexpressed in various human cancers and exerts important functions in tumor progression. This study is to identify the expression pattern and clinical significance of Cav3.1 in oral squamous cell carcinoma (OSCC). Firstly, the expression levels of Cav3.1 in oral mucosa (OM), dysplasia and oral squamous cell carcinoma (OSCC) were determined and compared by real-time quantitative PCR and Western blot analysis. After that, human tissue microarrays, containing 29 OM, 23 dysplasia and 122 primary OSCC samples, were applied to investigate the expression levels of Cav3.1, proliferation markers [Ki-67, proliferating cell nuclear antigen (PCNA)] and cellular anti-apoptosis markers [B cell lymphoma 2 (Bcl-2)] by immunohistochemistry and digital pathology analysis. In addition, we determined the function of Cav3.1 using knockdown assays of Cav3.1 in vitro. The results demonstrated that the mRNA and protein expression of Cav3.1 were significantly higher in OSCC specimens, and Cav3.1 expression in primary OSCCs was correlated with tumor size and pathological grade. Statistical analysis of immunohistochemical staining showed that Cav3.1 was closely correlated with Ki-67, PCNA and Bcl-2. Functional studies showed that the knockdown of Cav3.1 in OSCC cell lines using RNA interference influenced cell proliferation and apoptosis in vitro. Taken together, these findings suggested that Cav3.1 is overexpressed in OSCC tissues, also associated with proliferative and anti-apoptotic activity in oral squamous cell carcinoma.


Subject(s)
Apoptosis , Calcium Channels, T-Type/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Apoptosis/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Mouth Neoplasms/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...