Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(51): 110191-110203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783990

ABSTRACT

Sediment is an important carrier of evidence about environmental evolution which receives huge volumes of organic material originated from both anthropogenic and natural sources. In this study, based on sedimentary chronology, the vertical trends of particle size distribution, total organic carbon (TOC), total nitrogen (TN), and their stable isotopes (δ13C, δ15N) in the sediment core of the nuclear power sea in southwest Daya Bay were analyzed, and the distribution characteristics and contribution ratios of different sources of organic matter in the sedimentary environment over the past 70 years were resolved using a Bayesian mixing model (MixSIAR). TOC, TN, δ13C, and δ15N ranged from 0.89 to 1.56%, 0.09 to 0.2%, - 22.3 to - 20.6‰, and 4.38 to 6.51‰, respectively. The organic matter in the sediment is controlled by a mixture of terrestrial input and marine autochthonous, the proportion of organic matter from terrestrial sources increases, while that from marine sources decreases in the sediment core, which persists from 1960 to 2000, yet organic matter from marine sources still dominates. The first signs of increased primary productivity occurred in 1960, and it was primarily due to agricultural activity. After the 1980s, the rapid increase in population around Daya Bay, the construction of nuclear power plants, the rise of aquaculture, and the quick expansion of industrial bases were all major factors that changed the ecological environment of Daya Bay.


Subject(s)
Bays , Water Pollutants, Chemical , Anthropogenic Effects , Bayes Theorem , Geologic Sediments , Nitrogen/analysis , Environmental Monitoring , China , Water Pollutants, Chemical/analysis
2.
Toxics ; 11(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36851025

ABSTRACT

The occurrence, multi-index assessment, and sources of heavy metals in surface sediments of Zhelin Bay were investigated. Average heavy metal concentrations (mg/kg) were 81.89 (Cr), 770.76 (Mn), 16.81 (Co), 62.25 (Ni), 96.30 (Cu), 162.04 (Zn), and 73.40 (Pb), with the concentrations of studied seven heavy metals being significantly higher than their corresponding background values. Geo-accumulation index (Igeo) and pollution load index (PLI) were implemented to assess degree of heavy metal contamination. The Igeo and PLI indicated that Cr, Mn, Co, Zn, and Pb were slightly polluted, and Cu and Ni were moderately polluted in the region. Potential ecological risk index (RI) and mean possible effect level (PEL) quotient were conducted to assess ecological risk. The RI and mean PEL quotient demonstrated that surface sediments of Zhelin Bay were slight ecological risks and exhibited a 21% probability of toxicity. Principal component analysis (PCA) combined with the correlation analysis (CA) and hierarchical cluster analysis (HAC) revealed that the heavy metal contamination in Zhelin Bay might originate from three type sources.

3.
Mar Pollut Bull ; 186: 114445, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470095

ABSTRACT

Surface sediments from 21 stations within the Pearl River estuary (PRE) intertidal zone were sampled for heavy metal contamination analysis. Average heavy metal concentrations (mg/kg) in the PRE intertidal zone were 118.5 (Cr), 860.4 (Mn), 19.5 (Co), 72.5 (Ni), 128.1 (Cu), 198.5 (Zn), and 73.0 (Pb), with the concentrations of Mn, Co, Ni, Cu, and Zn being significantly higher than their corresponding background values. The enrichment factor (EF) and geo-accumulation index (Igeo) reveal the same contamination status, with Pb, Ni, Co, Mn, and Cu showing slight to moderate contamination. Overall, the combined heavy metal concentration in the PRE intertidal surface sediments had a 24.7 % probability of toxic effects on aquatic biota based on the joint probabilistic risk (JPR) approach. Principal component analysis (PCA) coupled with the correlation analysis (CA) revealed that the heavy metal contamination in the PRE intertidal zone might originate from natural and anthropogenic sources.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Rivers , Estuaries , Lead/analysis , Geologic Sediments/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Risk Assessment , China
4.
Mar Pollut Bull ; 185(Pt A): 114209, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36270056

ABSTRACT

A detailed study of a sediment core from Daya Bay (South China) has revealed three stages of heavy metal deposition over the past century. Prior to the 1980s, heavy metal concentrations were low with limited influence by human activities. From the 1980s to 2000, metal pollution intensified, and anthropogenic activities, such as oil and petrochemical industries, and fuel combustion, had the greatest direct influence on Hg, Ni, Pb, and Zn concentrations, whereas atmospheric deposition and mariculture were also contributors to the continued increase in Cr, Cu, Pb, Zn, and Ni. Since the year 2000, heavy metal concentration has declined and stabilized. It is noteworthy that anthropogenic input of Cu and Pb is ongoing and may result in a moderate pollution risk. Both modified pollution index (MPI) and modified ecological risk (MRI) consistently indicate that the ecological risk in terms of heavy metals in Daya Bay has remained moderate over the past 70 years.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Bays , Geologic Sediments , Environmental Monitoring , Water Pollutants, Chemical/analysis , Anthropogenic Effects , Lead , Metals, Heavy/analysis , China , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...