Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 40(39): 10007-13, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21897929

ABSTRACT

An efficient route to construct a three-dimensional crystal structure is stacking of two-dimensional building blocks (2D-BBs). The crystal structures of potential thermoelectric compounds REOZnSb (RE = La, Ce, Pr, Nd) were virtually constructed from insulating [REO] and conducting [ZnSb] layers. Further optimizations performed by means of first-principles calculations show that REOZnSb should exhibit semimetal or narrow band-gap semiconductor behaviors, which is a prerequisite for high thermoelectric efficiency. The analysis of the electron localizability indicator for LaOZnSb reveals mostly covalent polar interactions between all four kinds of atoms. The electron density yields completely balanced ionic-like electronic formula La(1.7+)O(1.2-)Zn(0.4+)Sb(0.9-). Furthermore, the samples of REOZnSb have been synthesized via solid-state reaction, and their crystal structures were confirmed by powder X-ray diffraction. The differences in cell parameters between the theoretically optimized and the experimental values are smaller than 2%. The temperature dependence of the magnetic susceptibility shows that LaOZnSb is diamagnetic above 40 K, whereas CeOZnSb, PrOZnSb and NdOZnSb are Curie-Weiss-type paramagnets. Electrical conductivity and Seebeck effect measurements indicate that REOZnSb are p-type semiconductors. A considerably high Seebeck coefficient and low thermal conductivity were obtained for pure LaOZnSb, but its low electrical conductivity leads to a small ZT. The high adjustability of the crystal structure as well as properties by optimization of the chemical composition in the compounds REOZnSb provide good prospects for achieving high thermoelectric efficiency.

2.
Dalton Trans ; 39(4): 1101-4, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20066197

ABSTRACT

The thermoelectric performance of EuZn(2)Sb(2) and EuCd(2)Sb(2) was optimized by mixed occupation of the transition metal position. Samples in the solid solution Eu(Zn(1-x)Cd(x))(2)Sb(2) with the CaAl(2)Si(2)-type crystal structure (space group Pm1) were prepared from the elements for compositions with x = 0, 0.1, 0.3, 0.5 and 1. The thermoelectric properties were investigated after densification of the products by spark plasma sintering (SPS). The samples show low electrical resistivity, high thermopower and a low lattice thermoconductivity. The highest ZT value of 1.06 at 650 K is obtained for x = 0.1.

3.
J Chem Phys ; 129(16): 164713, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-19045304

ABSTRACT

Polycrystalline EuZn(2)Sb(2) is prepared by direct reaction of the elements. Its composition, structure, magnetism, heat capacity, and thermoelectric properties have been investigated. EuZn(2)Sb(2) crystallizes in p3m space group with a=4.4932(7) A and c=7.6170(10) A. Antiferromagnetic ordering is detected at the Neel temperature of 13.06 K, and the saturation magnetization reaches 6.87mu(B)Eu at 2 K and 7 T. Eu ion has +2 valence. Its Hall effects are characterized by a high positive Hall coefficient of +0.226 cm(3)C, proper carrier concentration of 2.77x10(19)cm(3), and high carrier mobility of 257 cm(2)V s at 300 K. This compound shows high p-type Seebeck coefficient (+122 to +181 muVK), low lattice thermal conductivity (1.60-0.40 Wm K), and high electrical conductivity (1137-524 Scm). The obtained figure of merit and powder factor reach 0.92 and 20.72 muWcm K(2), respectively. The thermoelectric properties of EuZn(2)Sb(2) are encouraging.

SELECTION OF CITATIONS
SEARCH DETAIL
...