Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Res Clin Pract ; 57(2): 75-82, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12062850

ABSTRACT

UNLABELLED: Obesity was considered to be one of the causes of non-insulin-dependent diabetes mellitus (NIDDM). However, the mechanism responsible for obesity has not yet been fully elucidated. In this study, we first examined the relationship between food intake amount and obesity in a NIDDM model animal, and then we focused on triacylglycerol (TG) synthetase activity, which play important roles in hypertriglyceridemia (HTG) associated with obesity. Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model of NIDDM, characterized by obesity, HTG and insulin resistance. In this study, OLETF rats were allocated to a food-satiated group (satiated) or food-restricted group (to eliminate the effects of hyperphagia on obesity, amount of daily food intake was the same as that in their control strain Long-Evans Tokushima Otsuka (LETO) rats). Changes in body weight, body fat, intraabdominal fat weight, and TG content in liver were measured and biochemical blood tests and activity assay of TG synthetase (monoacylglycerol acyltransferase (MGAT) and diacylglycerol acyltransferase (DGAT)) were performed. RESULTS: (1) The body weight in the restricted OLETF rats was significantly decreased to 71.7% of that in the satiated OLETF rats, which was almost the same value as that in the LETO rats. However, body fat and intraabdominal fat weight were significantly increased in restricted OLETF rats and satiated OLETF rats compared with LETO rats. (2) Plasma TG, insulin, glucose, leptin and hepatic TG content were significantly higher in OLETF rats than the values in LETO rats. (3) MGAT activity in the small intestine from both satiated and restricted OLETF rats was significantly higher than that in LETO rats. DGAT activity in OLETF rats was not significantly different from that in LETO rats. In conclusion, the body fat weight and plasma TG were still significantly accelerated in OLETF rats at the same food intake as LETO rats. MGAT activity in the small intestine from OLETF rats was also significantly higher than those of LETO rats. Therefore, high MGAT activity in the small intestine may play an important role in HTG and obesity, subsequently hastening the development of NIDDM in OLETF rats.


Subject(s)
Acyltransferases/metabolism , Diet, Reducing , Energy Intake , Intestines/enzymology , Obesity/physiopathology , Adipose Tissue/anatomy & histology , Aging , Animals , Blood Glucose/metabolism , Body Weight , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Glucose Tolerance Test , Intestine, Small/enzymology , Male , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...