Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(8): 1896-1899, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621033

ABSTRACT

Next-generation display and lighting based on quantum dot light-emitting diodes (QLEDs) require a balanced electron injection of electron transport layers (ETLs). However, classical ZnO nanoparticles (NPs) as ETLs face inherent defects such as excessive electron injection and positive aging effects, urgently requiring the development of new types of ETL materials. Here, we show that high stability SnO2 NPs as ETL can significantly improve the QLED performance to 100567 cd·m-2 luminance, 14.3% maximum external quantum efficiency, and 13.1 cd·A-1 maximum current efficiency using traditional device structures after optimizing the film thickness and annealing the temperature. Furthermore, experimental tests reveal that by doping Zr4+ ions, the size of SnO2 NPs will reduce, dispersion will improve, and energy level will shift up. As expected, when using Zr-SnO2 NPs as the ETL, the maximum external quantum efficiency can reach 16.6%, which is close to the state-of-the-art QLEDs based on ZnO ETL. This work opens the door for developing novel, to the best of our knowledge, type ETLs for QLEDs.

2.
Small ; 20(26): e2310226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308112

ABSTRACT

Organic afterglow materials have significant applications in information security and flexible electronic devices with unique optical properties. It is vital but challenging to develop organic afterglow materials possessing controlled output with multi-stimuli-responsive capacity. Herein, dimethyl terephthalate (DTT) is introduced as a strong proton acceptor. The migration direction of N─H protons on two compounds Hs can be regulated by altering the excitation wavelength (Ex) or amine stimulation, thereby achieving dual-stimuli-responsive afterglow emission. When the Ex is below 300 nm, protons migrate to S1-2 DTT, where strong interactions induce phosphorescent emission of Hs, resulting in afterglow behavior. Conversely, when the Ex is above 300 nm, protons interact with the S0 DTT weakly and the afterglow disappears. In view of amine-based compounds with higher proton accepting capabilities, it can snatch proton from S1-2 DTT and redirect the proton flow toward amine, effectively suppressing the afterglow but obtaining a new redshifted fluorescence emission with Δλ over 200 nm due to the high polarity of amine. Moreover, it is successfully demonstrated that the applications of dual-stimuli-responsive organic afterglow materials in information encryption based on the systematic excitation-wavelength-dependent (Ex-De) behavior and amine selectivity detection.

3.
J Am Chem Soc ; 145(24): 13392-13399, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289031

ABSTRACT

The design and construction of organic afterglow materials is an attractive but formidably challenging task due to the low intersystem crossing efficiency and nonradiative decay. Here, we developed a host surface-induced strategy to achieve excitation wavelength-dependent (Ex-De) afterglow emission through a facile dropping process. The prepared PCz@dimethyl terephthalate (DTT)@paper system exhibits a room-temperature phosphorescence afterglow, with the lifetime up to 1077.1 ± 15 ms and duration time exceeding 6 s under ambient conditions. Furthermore, we can switch the afterglow emission on and off by adjusting the excitation wavelength below or above 300 nm, showing a remarkable Ex-De behavior. Spectral analysis demonstrated that the afterglow originates from the phosphorescence of PCz@DTT assemblies. The stepwise preparation process and detailed experiments (XRD, 1H NMR, and FT-IR analysis) proved the presence of strong intermolecular interactions between the carbonyl groups on the surface of DTT and the entire frame of PCz, which can inhibit the nonradiative processes of PCz to achieve afterglow emission. Theoretical calculations further manifested that DTT geometry alteration under different excitation beams is the main reason for the Ex-De afterglow. This work discloses an effective strategy for constructing smart Ex-De afterglow systems that can be fully exploited in a range of fields.

4.
J Am Chem Soc ; 144(28): 12652-12660, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35762534

ABSTRACT

Stimuli-responsive functional luminescent materials with tunable color and long-persistent emission have emerged as a powerful tool in information encryption, anticounterfeiting, and bioelectronics. Herein, we prove a novel strategy for manipulating the proton transfer pathways in the salicylaldehyde derivative EQCN solutions/powder to produce excitation wavelength-dependent (Ex-De) performances with switchable emissions (blue-sky, green, and orange). The experiments and theoretical results demonstrated that the different luminous colors are originated from enol (E) form (blue-sky), Keto-1 (K1) form (orange) through the excited-state intramolecular proton transfer (ESIPT) process, and Keto-2 (K2) form (green) through the excited-state long-range proton transfer (ESLRPT) process. We leverage synergistic effects between the dopant and matrix (dimethyl terephthalate, DTT) to manipulate the excited-state proton transfer pathway in EQCN@DTT mixture powders to generate Ex-De long-persistent luminescence (Ex-De-LPL), which can be well applied in multilevel information encryption. This strategy not only paves an intriguing way for the construction and preparation of pure organic Ex-De materials but also offers a guideline for developing LPL materials based on ESLRPT processes.


Subject(s)
Luminescence , Protons , Alcohols
5.
Chem Sci ; 12(9): 3308-3313, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-34164100

ABSTRACT

Amyloid fibrils are associated with many neurodegenerative diseases. In situ and in vivo visualization of amyloid fibrils is important for medical diagnostics and requires fluorescent probes with both excitation and emission wavelengths in the far-red and NIR region, and simultaneously with high binding-affinity to amyloid fibrils and the ability to cross the blood-brain barrier, which, however, remain a challenge. Here, we rationally design and synthesize an excellent polarity-sensitive two-photon excited NIR fluorophore (TZPI) based on a donor (D)-acceptor (A)-ion compound. The electron-rich carbazole group and the ionic pyridinium bromide group, linked by an electron-poor π-conjugated benzothiadiazole group, ensure strong near infrared (NIR) emission. Furthermore, the lipophilic carbazole together with the benzothiadiazole group facilitates docking of the probe in the hydrophobic domains of amyloid aggregates with the dissociation constant K d = 20 nM and 13.5-fold higher binding affinity to insulin fibrils than the commercial probe ThT. On association with the amyloid fibrils, the tiny decrease in polarity leads to a large increase in its NIR emission intensity with an on-off ratio > 10; meanwhile, the TZPI probe exhibits a quantum yield of up to 30% and two-photon absorption cross-section values of up to 467.6 GM at 890 nm. Moreover, the application of TZPI in two-photon imaging is investigated. The ultrahigh binding affinity, the strong NIR emission, the good two-photon absorption properties, the high photo-stability, the appropriate molecular mass of 569 Da and the lipophilicity with log P = 1.66 ± 0.1 to cross the BBB make TZPI promising as an ideal candidate for detecting amyloid plaques in vivo.

6.
Nano Lett ; 21(8): 3487-3494, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33848175

ABSTRACT

Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm-2 and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.


Subject(s)
Nanoparticles , Fluorescent Dyes , Lasers , Microscopy, Fluorescence , Silicon Dioxide
7.
Nanoscale ; 11(27): 12990-12996, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31264678

ABSTRACT

Stimulated emission depletion (STED) nanoscopy is a powerful sub-diffraction imaging tool to probe subcellular structures and organelles. Conventional organic dyes require high STED power (PSTED) to obtain sub-diffraction resolution, leading to serious photo-bleaching. Herein, this study demonstrates highly emissive silica-coated core-shell organic nanoparticles (CSONPs) as a new type of photostable probe with ultrahigh stimulated emission depletion efficiency for low-power super-resolution STED nanoscopy. The CSONPs offer (i) efficient red emission with high solid-state fluorescence quantum yields around 0.6, (ii) large Stokes shift of 150 nm and (iii) high photostability owing to silica shell protection. The stimulated emission depletion efficiency (η) of CSONPs was extremely high up to η = 99% (the highest value reported so far) with a saturation intensity as low as Isat = 0.18 MW cm-2. Moreover, this research demonstrates the super-resolution imaging of living HeLa cells stained using CSONPs with a lateral spatial resolution of 63 nm at an extremely low depletion power of ISTED = 0.89 MW cm-2 and a long-term stability >600 s at η = 80% without obvious fatigue. The excellent and comprehensive performances of the CSONPs are promising for super-resolution imaging in biological applications.

8.
ACS Appl Mater Interfaces ; 10(39): 32981-32987, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30080392

ABSTRACT

Conventional near-infrared (NIR) luminescent probes, such as DsRed and Cy5, utilize spontaneous emission (SE) signals, which are broad (fwhm >50 nm) and often have low quantum yield. Herein, we developed smart NIR intracellular whispering-gallery mode (WGM) microlaser probes made by organic microspheres of (E)-3-(4-(diptolylamino)phenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one (DPHP) coated with a silica shell. The overall small diameter ( D, adjustable between 2 and 10 µm) and the biocompatible silica shell ensure our core-shell microspheres (CSmSPs) to be engulfed in cells as a microlaser operating around 720 nm with a low threshold of 0.78 µJ/cm2. Considering that WGM mode spacing depending strongly on its size, it will be possible to distinguish millions of individual macrophages through well-defined WGM lasing peaks (fwhm ≤2 nm) of CSmSPs of different sizes. Furthermore, we monitored the transformation of normal macrophages to foamy ones by encoding them with our NIR CSmSPs microlaser probes, which deliver constant WGM lasing signals with a spectral fluctuation <0.02 nm and excellent stability.


Subject(s)
Microspheres , Silicon Dioxide/chemistry , Humans , Macrophages/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning
9.
Acta Chim Slov ; 63(4): 891-989, 2016 12.
Article in English | MEDLINE | ID: mdl-28004103

ABSTRACT

Four metal complexes based on quinoline carboxylate ligand from 2-(pyridin-4-yl)quinoline-4-carboxylic acid (HL), [ML2(H2O)2] · 2H2On (M = MnII, 1; M = CoII, 2; M = CdII, 3) and [Ag2L2(H2O)2] · 3H2On (4) have been synthesized under hydrothermal conditions. Their structures were determined by elemental analyses, IR spectra, and further characterized by single-crystal X-ray diffraction analysis. Complexes 1-3 feature a 1D chain structure which is further linked together to construct the 3D supramolecular network through hydrogen bonds. Complex 4 exhibits a 3D configuration. The fluorescent behavior and antibacterial activities of these compounds have been investigated.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metals/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Crystallography, X-Ray , Hydrogen Bonding , Luminescence , Molecular Structure , Spectrophotometry, Infrared
10.
Bioorg Med Chem Lett ; 26(20): 4925-4929, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27634193

ABSTRACT

Three mononuclear Cu(II) complexes Cu(HL1)Cl2 (1), Cu(HL2)Cl2 (2), and Cu(L3)SCN (3) have been synthesized based on chelating hydrazone ligands HL1, HL2, and HL3, respectively. These new compounds gave satisfactory IR-spectroscopic data and were further characterized by elemental and X-ray diffraction analyses. Their urease inhibitory evaluation was tested in vitro against jack bean urease. The results showed that the inhibitory activities of the copper complexes are all superior to the positive reference. Enzyme kinetics studies were undertaken to estimate the inhibition mechanism of the copper complexes. Molecular docking simulations have been performed to rationalize their binding models. In addition, their interactions with serum albumin were also studied.


Subject(s)
Copper/chemistry , Hydrazones/chemistry , Enzyme Inhibitors/pharmacology , Ligands , Molecular Docking Simulation , Spectrophotometry, Infrared , Urease/antagonists & inhibitors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...