Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(12): e0260673, 2021.
Article in English | MEDLINE | ID: mdl-34932582

ABSTRACT

Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids ('NK-Senji' and 'S-278'), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, 'NK-Senji' performed better for morphological, physiological, and yield-related traits than 'S-278'. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid 'NK-Senji' under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.


Subject(s)
Adaptation, Physiological , Agriculture/methods , Crops, Agricultural/growth & development , Helianthus/growth & development , Soil/chemistry , Agricultural Irrigation/methods , Chimera/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Desert Climate , Droughts , Helianthus/genetics , Helianthus/metabolism , Humans , Sand , Stress, Physiological , Water/metabolism
2.
Saudi J Biol Sci ; 28(12): 6818-6828, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34866982

ABSTRACT

Drought is a major and constantly increasing abiotic stress factor, thus limiting chickpea production. Like other crops, Kabuli Chickpea genotypes are screened for drought stress through Multi-environment trials (METs). Although, METs analysis is generally executed taking into account only one trait, which provides less significant reliability for the recommendation of genotypes as compared to multi trait-based analysis. Multi trait-based analysis could be used to recommend genotypes across diverse environments. Hence, current research was conducted for selection of superior genotypes through multi-trait stability index (MTSI) by using mixed and fixed effect models under six diverse environments. The genotypic stability was computed for all traits individually using the weighted average of absolute scores from the singular value decomposition of the matrix of best linear unbiased predictions for the genotype vs environment interaction (GEI) effects produced by a linear mixed-effect model index. A superiority index, WAASBY was measured to reflect the MPS (Mean performance and stability). The selection differential for the WAASBY index was 11.2%, 18.49% and 23.30% for grain yield (GY), primary branches per plant (PBP) and Stomatal Conductance (STOMA) respectively. Positive selection differential (0.80% ≤ selection differential ≤ 13.00%) were examined for traits averaged desired to be increased and negative (-0.57% ≤ selection differential ≤ -0.23%) for those traits desired to be reduced. The MTSI may be valuable to the plant breeders for the selection of genotypes based on many characters as being strong and simple selection process. Analysis of MTSI for multiple environments revealed that, the genotypes G20, G86, G31, G28, G116, G12, G105, G45, G50, G10, G30, G117, G81, G48, G85, G17, G32, G4, and G37 were the most stable and high yielding out of 120 chickpea genotypes, probably due to high MPS of selected traits under various environments. It is concluded that identified traits can be utilized as genitors in hybridization programs for the development of drought tolerant Kabuli Chickpea breeding material.

3.
Environ Sci Pollut Res Int ; 28(30): 41135-41148, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33779899

ABSTRACT

Maize/soybean relay intercropping system is a popular cultivation system to obtain high yields of both crops with reduced inputs. However, shading by maize decreases the photosynthetically active radiation, reaching the soybean canopy in maize/soybean relay intercropping system, which reduces soybean radiation use efficiency and competitiveness. Here, we reveal that compact maize in maize/soybean relay intercropping system enhances the photosynthetically active radiation transmittance, leaf area index, dry matter production, radiation use efficiency, and competitiveness of soybean and compensates the slight maize yield loss by substantially increasing soybean yield. In this experiment, soybean was relay intercropped with different maize types (SI, spreading maize; SII, semi-compact maize; and SIII, compact maize) in maize/soybean relay intercropping system, and all the relay intercropping treatments were compared with sole cropping systems of soybean and maize. Results revealed that SIII significantly enhanced the soybean radiation use efficiency (by 77%, from 0.35 g MJ-1 in SI to 0.61 g MJ-1 in SIII) and total radiation use efficiency (soybean radiation use efficiency + maize radiation use efficiency) of maize/soybean relay intercropping system (by 5%, from 3.53 g MJ-1 in SI to 3.73 g MJ-1 in SIII). Similarly, SIII improved the competitiveness (by 62%, from 0.58% in SI to 0.94% in SIII) of soybean but reduced the competitiveness (by 38%, from 1.73% in SI to 1.07% in SIII) of maize, which, in turn, considerably increased soybean yield by maintaining maize yield. On average, over the 2 years, in SIII, relay-intercropped soybean produced 89% of the sole soybean yield, and relay-intercropped maize produced 95% of the sole maize yield. Besides, treatment SIII achieved the mean highest land equivalent ratio value of 1.84 in both years. Thus, enhanced radiation use efficiency of soybean, especially during the co-growth period, was the primary factor responsible for the high productivity of the maize/soybean relay intercropping system.


Subject(s)
Glycine max , Zea mays , Agriculture , Crops, Agricultural , Edible Grain , Plant Leaves
4.
IET Nanobiotechnol ; 13(1): 46-51, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30964037

ABSTRACT

With the progression of nanotechnology, the use of nanoparticles (NPs) in consumer products has increased dramatically and green synthesis is one of the cheapest and eco-friendly methods to obtain non-hazardous NPs. In the current research zinc (Zn) NPs synthesis was carried out by using the fresh and healthy leaves of Mentha arvensis L. followed by characterisation through ultraviolet (UV)-visible spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). UV-visible spectroscopy confirmed the green synthesis of ZnNPs, while XRD confirmed the size of NPs, which was 30-70 nm. SEM shows that the shape of ZnNPs was irregular. The effects of green synthesised NPs on two different varieties of Brassica napus were evaluated. Exposure to ZnNPs (5, 15, and 25 mg/l-1) caused a significant increase in root and shoot length of B. napus. The application of NPs significantly improved plant germination and triggered the production of secondary metabolite and antioxidant enzymes. ZnNPs showed a significant increase in chlorophyll, superoxide dismutase, total flavonoid content (TFC) and antioxidant enzymes while total phenolic content was decreased when TFC increased. Thus, it has been concluded from the current study that ZnNPs may possibly trigger the production of antioxidant enzymes and various biochemical compounds.


Subject(s)
Brassica napus/drug effects , Germination/drug effects , Metal Nanoparticles/chemistry , Zinc/pharmacology , Antioxidants/metabolism , Brassica napus/chemistry , Brassica napus/metabolism , Green Chemistry Technology , Particle Size , X-Ray Diffraction , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...