Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Pharmacol ; 14: 1265573, 2023.
Article in English | MEDLINE | ID: mdl-37705534

ABSTRACT

Mycobacterium tuberculosis is the bacterial strain that causes tuberculosis (TB). However, multidrug-resistant and extensively drug-resistant tuberculosis are significant obstacles to effective treatment. As a result, novel therapies against various strains of M. tuberculosis have been developed. Drug development is a lengthy procedure that includes identifying target protein and isolation, preclinical testing of the drug, and various phases of a clinical trial, etc., can take decades for a molecule to reach the market. Computational approaches such as QSAR, molecular docking techniques, and pharmacophore modeling have aided drug development. In this review article, we have discussed the various techniques in tuberculosis drug discovery by briefly introducing them and their importance. Also, the different databases, methods, approaches, and software used in conducting QSAR, pharmacophore modeling, and molecular docking have been discussed. The other targets targeted by these techniques in tuberculosis drug discovery have also been discussed, with important molecules discovered using these computational approaches. This review article also presents the list of drugs in a clinical trial for tuberculosis found drugs. Finally, we concluded with the challenges and future perspectives of these techniques in drug discovery.

2.
Molecules ; 28(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570832

ABSTRACT

This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, ß-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Vildagliptin , Diabetes Mellitus, Type 2/drug therapy , Sitagliptin Phosphate , Structure-Activity Relationship
3.
Arch Pharm (Weinheim) ; 356(5): e2200421, 2023 May.
Article in English | MEDLINE | ID: mdl-36617511

ABSTRACT

The α-glucosidase is a validated target to develop drugs for treating type 2 diabetes mellitus. The existing α-glucosidase inhibitors have certain shortcomings related to side effects and route of synthesis. Accordingly, it is inevitable to develop new chemical templates as α-glucosidase inhibitors. Pyrazole derivatives have a special place in medicinal chemistry because of various biological activities. Recently, pyrazole-based heterocyclic compounds have emerged as a promising scaffold to develop α-glucosidase inhibitors. This study focuses on the recently reported pyrazole-based α-glucosidase inhibitors, including their biological activity (in vivo, in vitro, and in silico), structure-activity relationship, and ways of synthesis. The literature revealed the development of several promising pyrazole-based α-glucosidase inhibitors and new synthetic routes for their preparation. The encouraging α-glucosidase inhibitory results of the pyrazole-based heterocyclic compounds make them an attractive target for further research. The authors also foresee the arrival of the pyrazole-based α-glucosidase inhibitors in clinical practice.


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Humans , Structure-Activity Relationship , Molecular Structure , alpha-Glucosidases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Pyrazoles/pharmacology , Pyrazoles/chemistry , Molecular Docking Simulation
4.
Mini Rev Med Chem ; 23(5): 576-632, 2023.
Article in English | MEDLINE | ID: mdl-35546776

ABSTRACT

BACKGROUND: SARS-CoV and SARS-CoV-2 are exceedingly contagious and typically result in major respiratory illnesses (acute respiratory syndrome). The public health is facing enormous challenges across all the nations due to these newly emerging pathogens. Reliable and systematic examination of SARS-CoV and COVID-19 will assist in identifying infectious persons accurately. Based on the biological, chemical, and genetic link of SARS CoV-2 towards SARS-CoV, the recurrence of different anti-SARS-CoV natural drug molecules may be beneficial in the advancement of anti-COVID-19 herbal drug molecules. Here in this review, we evaluated SAR research that has recently been published as well as molecular docking analysis of previously synthesised compounds that have been targeted against SARS-CoV and SARS-CoV-2, respectively. This investigation might assist scientists in creating novel and revolutionary molecules that could target SAR-CoV-2. OBJECTIVES: The review highlights the heterocyclic inhibitors' ability to successfully inhibit SARSCoV and SARS-CoV-2. The meticulously described structure-activity relationship of potential SARS-CoV and SARS-CoV-2 inhibiting compounds has been addressed in this review. EVIDENCE ACQUISITION: We conducted a thorough literature assessment employing electronic databases for scientific articles highlighting potential heterocyclic inhibitors for SARS-CoVand SARSCoV- 2, published from 2010 to 2021. We recovered 415 articles, but only 220 were involved and conversed in this manuscript. The article apprehended appropriate research considering three areas: 1) SAR activity, 2) Molecular docking, and 3) Biological activity and future prospects on SARS-CoV-2. METHODS: The potential compounds with decent inhibitory activity have been discussed and reviewed along with their inhibition potential, expressed in terms of IC50 value. RESULTS: Heterocyclic scaffolds reflect an extensive spectrum of therapeutic activity and might function as an initiating concept for the designing and discovery of potential inhibitors for SARS-CoV and SARS-CoV-2 treatment. CONCLUSION: The points highlighted here may prove to be a vital tool for medicinal chemists working/ investigating more potent and efficacious scaffolds in treating SARS-CoV and SARS-CoV-2.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2 , Molecular Docking Simulation , Structure-Activity Relationship
5.
J Biomol Struct Dyn ; 41(19): 9398-9423, 2023 11.
Article in English | MEDLINE | ID: mdl-36376021

ABSTRACT

Pharmacophore modelling, 3 D QSAR modelling, virtual screening, and molecular dynamics study, all-in-one combination were employed successfully design and develop an alpha-glucosidase inhibitor. To explain the structural prerequisites of biologically active components, 3 D-QSAR models were generated using the selected best hypothesis (AARRR) for compounds 55 included in the model C. The selection of 3 D-QSAR models showed that the Gaussian steric characteristic is crucial to alpha glucosidase's inhibitory potential. The alpha-glucosidase inhibitory potency of the compound is enhanced by other components, including Gaussian hydrophobic groups, Gaussian hydrogen bond acceptor or donor groups, Gaussian electrostatic characteristics, and a Gaussian steric feature. An identification of structure-activity relationships can be obtained from the developed 3 D-QSAR, C model, with R2 = 0.77 and SD = 0.02 for training set, and Q2 = 0.66, RMSE 0.02, and Pearson R = 0.81 for testing set, corresponding to elevated predictive ability. Additionally, docking and MM/GBSA experiments on 1146023 showed that it interacts with critical amino acids in the binding site when coupled with acarbose. Further, five compounds that display a high affinity for alpha-glucosidase were found, and these compounds may serve as potent leads for alpha-glucosidase inhibitor development. Biological activity will be tested for these compounds in the future.Communicated by Ramaswamy H. Sarma.


Subject(s)
Glycoside Hydrolase Inhibitors , Molecular Dynamics Simulation , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Pharmacophore , alpha-Glucosidases
6.
Front Mol Biosci ; 10: 1306179, 2023.
Article in English | MEDLINE | ID: mdl-38516396

ABSTRACT

Introduction: The pursuit of effective therapeutic solutions for SARS-CoV-2 infections and COVID-19 necessitates the repurposing of existing compounds. This study focuses on the detailed examination of the central protease, 3-chymotrypsin-like protease (3CLpro), a pivotal player in virus replication. The combined approach of molecular dynamics simulations and virtual screening is employed to identify potential inhibitors targeting 3CLpro. Methods: A comprehensive virtual screening of 7120 compounds sourced from diverse databases was conducted. Four promising inhibitors, namely EN1036, F6548-4084, F6548-1613, and PUBT44123754, were identified. These compounds exhibited notable attributes, including high binding affinity (ranging from -5.003 to -5.772 Kcal/mol) and superior Induced Fit Docking scores (ranging from -671.66 to -675.26 Kcal/mol) compared to co-crystallized ligands. Results: In-depth analysis revealed that F6548-1613 stood out, demonstrating stable hydrogen bonds with amino acids His41 and Thr62. Notably, F6548-1613 recorded a binding energy of -65.72 kcal/mol in Molecular Mechanics Generalized Born Surface Area (MMGBSA) simulations. These findings were supported by Molecular Dynamics simulations, highlighting the compound's efficacy in inhibiting 3CLpro. Discussion: The identified compounds, in compliance with Lipinski's rule of five and exhibiting functional molecular interactions with 3CLpro, present promising therapeutic prospects. The integration of in silico methodologies significantly expedites drug discovery, laying the foundation for subsequent experimental validation and optimization. This approach holds the potential to develop effective therapeutics for SARS-CoV-2.

8.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557840

ABSTRACT

Pyrazole, an important pharmacophore and a privileged scaffold of immense significance, is a five-membered heterocyclic moiety with an extensive therapeutic profile, viz., anti-inflammatory, anti-microbial, anti-anxiety, anticancer, analgesic, antipyretic, etc. Due to the expansion of pyrazolecent red pharmacological molecules at a quicker pace, there is an urgent need to put emphasis on recent literature with hitherto available information to recognize the status of this scaffold for pharmaceutical research. The reported potential pyrazole-containing compounds are highlighted in the manuscript for the treatment of cancer and inflammation, and the results are mentioned in % inhibition of inflammation, % growth inhibition, IC50, etc. Pyrazole is an important heterocyclic moiety with a strong pharmacological profile, which may act as an important pharmacophore for the drug discovery process. In the struggle to cultivate suitable anti-inflammatory and anticancer agents, chemists have now focused on pyrazole biomolecules. This review conceals the recent expansion of pyrazole biomolecules as anti-inflammatory and anticancer agents with an aim to provide better correlation among different research going around the world.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Drug Design , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Inflammation/drug therapy , Structure-Activity Relationship , Neoplasms/drug therapy
9.
J Ethnopharmacol ; 286: 114908, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34906636

ABSTRACT

BACKGROUND: In traditional herbal medicine, the Gymnema species has been well known for various therapeutic activities such as anti-diabetic, anti-inflammatory, anti-bacterial, anti-arthritic, anti-hyperlipidemic, cytotoxic, and immunostimulatory activities. This review is an effort to analyse all the recent studies done to explore the anti-diabetic potential of traditional Gymnema species. Gymnema sylvestre (Retz.) R.Br. ex Sm. is an important member of the Apocynaceae family that has been used to treat a variety of diseases, the most studied of which is diabetes. This action is mostly due to the pharmacologically active phytoconstituents present in its extract, which include gymnemic acids, triterpenoid saponin glycosides, and so on. Numerous other Gymnema species have also demonstrated a similar pharmacological action. INTRODUCTION: The goal of this study is to give a critical overview of the available data on Gymnema species that are used to treat diabetes. The major goal of this study is to give up-to-date knowledge on ethnopharmacology, botany, pharmacology, and structure-activity relationships of Gymnemaspecies from 2016 to 2020, as well as potential future research. The potential of using medicinal plants for alleviating symptoms of diabetes is recently being recognized. This review aims to summarize the available data and highlight both the potential and shortcomings of using Gymnema therapeutically. This knowledge can further be used to develop more therapeutically effective drugs derived from Gymnema. MATERIALS AND METHODS: Data for Gymnema species was obtained using a mix of several search terms from online databases such as PubMed, SCOPUS, and Europe PMC. Other literature surveys relevant to traditional knowledge, phytochemistry, pharmacology, or structure-activity relationship activity were also used as reference. Several methods by which Gymnema species extracts exert their effects have been investigated, and a summary of the newly discovered chemicals isolated from the plant in the previous five years has been provided. RESULTS: SAR based evaluation has been carried out for a total of 27 pharmacologically active compounds belonging to three species of Gymnema genus (Gymnema sylvestre, Gymnema latifolium, and Gymnema inodorum).These compounds demonstrated the critical significance of plant medicines for diabetes management. Numerous heterocyclic compounds have anti-diabetic action and may serve as a starting point for the design and identification of new diabetes inhibitors. CONCLUSIONS: This study aims to provide researchers with a better understanding of the antidiabetic potential Gymnema species, as well as an outline of prospective future developments. It was concluded after studying the evaluation done in the last 5 years that although extracts of Gymnema have shown good antidiabetic potential, further modifications in the structures could result in the development of more potent and safer compounds.


Subject(s)
Diabetes Mellitus/drug therapy , Gymnema/chemistry , Hypoglycemic Agents/pharmacology , Animals , Drug Development , Ethnopharmacology , Humans , Hypoglycemic Agents/isolation & purification , Medicine, Traditional , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
10.
Curr Top Med Chem ; 21(25): 2292-2349, 2021.
Article in English | MEDLINE | ID: mdl-34530713

ABSTRACT

Cancer is a heterogeneous disease characterized by an abnormal and uncontrolled division of the cells leading to tumors that invade the adjacent normal tissues. After cardiovascular diseases, it is the second most prevalent disease accounting for one in every six deaths worldwide. This alarming rate thus, demands an urgent need to investigate more effective drugs to combat the said disease. Oxygen and nitrogen-based heterocyclic compounds have shown remarkable therapeutic activity towards several diseases, including cancer. In this review, we have attempted to summarize the work done in the last decade (2009-2019), highlighting the anticancer activity of pyrido fused fivemembered heterocyclic ring derivatives. Additionally, we have focused on seven heterocyclic pyridine fused rings: Imidazopyridine, Triazolopyridine, Pyrrolopyridine, Pyrazolopyridines, Thienopyridine, and Isoxazolopyridine. A total of forty-nine compounds have been studied based on their invitro cytotoxic activity and their structure-activity relationship, underlining the anticancer activity of their various pharmacophores and substituents. This review, therefore, aims to draw the attention of the researchers worldwide towards the enormous scope of development of heterocyclic drug compounds, focussing mainly on pyrido fused five-membered heterocyclic rings as anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Humans , Neoplasms/drug therapy , Structure-Activity Relationship
11.
Bioorg Chem ; 113: 104998, 2021 08.
Article in English | MEDLINE | ID: mdl-34048996

ABSTRACT

Diabetes mellitus type 2 (T2D) is a group of genetically heterogeneous metabolic disorders whose frequency has gradually risen worldwide. Diabetes mellitus Type 2 (T2D) has started to achieve a pandemic level, and it is estimated that within the next decade, cases of diabetes might get double due to increase in aging population. Diabetes is rightly called the 'silent killer' because it has emerged to be one of the major causes, leading to renal failure, loss of vision; besides cardiac arrest in India. Thus, a clinical requirement for the oral drug molecules monitoring glucose homeostasis appears to be unmet. GPR119 agonist, a family of G-protein coupled receptors, usually noticed in ß-cells of pancreatic as well as intestinal L cells, drew considerable interest for type 2 diabetes mellitus (T2D). GPR119 monitors physiological mechanisms that enhance homeostasis of glucose, such as glucose-like peptide-1, gastrointestinal incretin hormone levels, pancreatic beta cell-dependent insulin secretion and glucose-dependent insulinotropic peptide (GIP). In this manuscript, we have reviewed the work done in the last five years (2015-2020) which gives an approach to design, synthesize, evaluate and study the structural activity relationship of novel GPR119 agonist-based lead compounds. Our article would help the researchers and guide their endeavours in the direction of strategy and development of innovative, effective GPR119 agonist-based compounds for the management of diabetes mellitus type 2.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Receptors, G-Protein-Coupled/agonists , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Drug Design , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Obesity/complications , Obesity/pathology , Oxadiazoles/chemistry , Oxadiazoles/metabolism , Oxadiazoles/pharmacology , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
12.
Eur J Med Chem ; 204: 112640, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32739648

ABSTRACT

The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Quinazolines/chemistry , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Humans , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
13.
Eur J Pharm Sci ; 153: 105494, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32730845

ABSTRACT

Although there have been many advancements in scientific research and development, the cause of epilepsy still remains an open challenge. In spite of high throughput research in the field of anti-epileptic drugs, efficacy void is still prevalent before the researchers. Researchers have persistently been exploring all the possibilities to curb undesirable side effects of the anti-epileptic drugs or looking for a more substantial approach to diminish or cure epilepsy. The drug development has shown a hope to medicinal chemists and researchers to carry further research by going through a substantial literature survey. This review article attempts to describe the recent developments in the anti-epileptic agents, pertaining to different molecular scaffolds considering their structure-activity relationship, docking studies and their mechanism of actions.


Subject(s)
Anticonvulsants , Epilepsy , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...