Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893812

ABSTRACT

In orthopedics and dentistry, there is an urgent need to obtain low-stiffness implants that suppress the stress shielding caused by the use of metallic implants. In this study, we aimed to fabricate alloys that can reduce the stiffness by increasing the strength while maintaining a low Young's modulus based on the metastable ß-Ti alloy. We designed alloys in which Ti was partially replaced by Zr based on the ISO-approved metastable ß-Ti alloy Ti-15Mo-5Zr-3Al. All alloys prepared by arc melting and subsequent solution treatment showed a single ß-phase solid solution, with no formation of the ω-phase. The alloys exhibited a low Young's modulus equivalent to that of Ti-15Mo-5Zr-3Al and a high strength superior to that of Ti-15Mo-5Zr-3Al and Ti-6Al-4V. This strengthening was presumed to be due to solid-solution strengthening. The biocompatibility of the alloys was as good as or better than that of Ti-6Al-4V. These alloys have potential as metallic materials suitable for biomedical applications.

2.
Sci Technol Adv Mater ; 23(1): 322-331, 2022.
Article in English | MEDLINE | ID: mdl-35557510

ABSTRACT

The band structures and band gap energies, E g, of passive films formed on titanium (Ti) in simulated bioliquids, Hanks' solution (Hanks) and saline, were evaluated. Ti was polarized at 0, -0.1, and -0.2 VAg/AgCl, E f, for 1 h. After polarization, the surfaces were characterized using X-ray photoelectron spectroscopy, and the photoelectrochemical responses were evaluated. The current change during photoirradiation was recorded as a photocurrent transient at each measuring potential, E m, and by changing the wavelength of the incident light. Passive films consisted of a very thin TiO2 layer containing small amounts of Ti2O3 and TiO, hydroxyl groups, and water. During polarization in Hanks, calcium and phosphate ions were incorporated or formed calcium phosphate but not in saline. Calcium phosphate and hydroxyl groups influenced the band structure. E g was graded in Hanks but constant in saline, independent of E f and E m. The passive film on Ti behaved as an n-type semiconductor containing two layers: an inner oxide layer with a large E g and an outer hydroxide layer with a small E g. In Hanks, E g was 3.3-3.4 eV in the inner oxide layer and 2.9 eV in the outer hydroxide layer. In saline, E g was 3.3 eV in the inner layer and 2.7 eV in the outer layer. Calcium phosphate and hydroxyl groups influenced the band structure of the passive film. The E g of the outermost surface was smaller than that of TiO2 ceramics, which is probably one of the principles of the excellent biocompatibility of Ti among metals.

3.
Dent Mater J ; 40(3): 592-598, 2021 May 29.
Article in English | MEDLINE | ID: mdl-33361664

ABSTRACT

A customized micro arc oxidation (MAO) treatment technique was developed to obtain desirable antibacterial properties on titanium surfaces. The two-step MAO treatment was applied to fabricate a specimen containing both Ag and Zn in its surface oxide layer. Surface analyses and metal-ion release tests were performed to evaluate the presence of Ag and Zn and the ion release behavior for simulating practical usage, respectively. Additionally, the antibacterial properties of the specimens were also evaluated using gram-negative facultative anaerobic bacteria. The MAO-treated specimens containing both Ag and Zn showed excellent antibacterial properties against Escherichia coli, and the properties were sustained even after 28 days of immersion in physiological saline to simulate the living environment.


Subject(s)
Silver , Titanium , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Surface Properties
4.
J Funct Biomater ; 11(2)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580288

ABSTRACT

Recently, silver (Ag) and copper (Cu) have been incorporated into a titanium (Ti) surface to realize their antibacterial property. This study investigated both the durability of the antibacterial effect and the surface change of the Ag- and Cu-incorporated porous titanium dioxide (TiO2) layer. Ag- and Cu-incorporated TiO2 layers were formed by micro-arc oxidation (MAO) treatment using the electrolyte with Ag and Cu ions. Ag- and Cu-incorporated specimens were incubated in saline during a period of 0-28 days. The changes in both the concentrations and chemical states of the Ag and Cu were characterized using X-ray photoelectron spectroscopy (XPS). The durability of the antibacterial effects against Escherichia coli (E. coli) were evaluated by the international organization for standardization (ISO) method. As a result, the Ag- and Cu-incorporated porous TiO2 layers were formed on a Ti surface by MAO. The chemical state of Ag changed from Ag2O to metallic Ag, whilst that of Cu did not change by incubation in saline for up to 28 days. Cu existed as a stable Cu2O compound in the TiO2 layer during the 28 days of incubation in saline. The concentrations of Ag and Cu were dramatically decreased by incubation for up to 7 days, and remained a slight amount until 28 days. The antibacterial effect of Ag-incorporated specimens diminished, and that of Cu was maintained even after incubation in saline. Our study suggests the importance of the time-transient effects of Ag and Cu on develop their antibacterial effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...