Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anim Genet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956930

ABSTRACT

To date, only 10 of the more than 30 fur colours that had been observed in American mink (Neogale vison) have been linked to specific genes. The Royal pastel fur colour is part of a large family of brownish colours that are quite similar to one another, making breeding and selecting processes more difficult. Here we carried out whole-genome sequencing of five American minks with Royal pastel (b/b) phenotypes originating from two distinct mink populations. We identified an insertion of endogenous retroviral element type 1 (ERV1) into the first intron of the gene encoding the HPS3 protein, which regulates the trafficking of tyrosinase-containing vesicles to maturing melanosomes. With Cas9-targeted nanopore sequencing, we reconstructed the full-length sequence of the 11.7 Kb ERV1 insertion and observed hypermethylation that spread to the HPS3 gene promoter region. These findings highlight the role of HPS3 in the formation of melanosomes and melanin, as well as the genetic process regulating the intensity and spectrum of hair colour. Moreover, in mink breeding projects, these data are also useful for tracking economically important fur qualities.

2.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791244

ABSTRACT

Cervical artery dissection (CeAD) is the primary cause of ischemic stroke in young adults. Monogenic heritable connective tissue diseases account for fewer than 5% of cases of CeAD. The remaining sporadic cases have known risk factors. The clinical, radiological, and histological characteristics of systemic vasculopathy and undifferentiated connective tissue dysplasia are present in up to 70% of individuals with sporadic CeAD. Genome-wide association studies identified CeAD-associated genetic variants in the non-coding genomic regions that may impact the gene transcription and RNA processing. However, global gene expression profile analysis has not yet been carried out for CeAD patients. We conducted bulk RNA sequencing and differential gene expression analysis to investigate the expression profile of protein-coding genes in the peripheral blood of 19 CeAD patients and 18 healthy volunteers. This was followed by functional annotation, heatmap clustering, reports on gene-disease associations and protein-protein interactions, as well as gene set enrichment analysis. We found potential correlations between CeAD and the dysregulation of genes linked to nucleolar stress, senescence-associated secretory phenotype, mitochondrial malfunction, and epithelial-mesenchymal plasticity.


Subject(s)
Gene Expression Profiling , Humans , Male , Female , Gene Expression Profiling/methods , Adult , Middle Aged , Genome-Wide Association Study , Transcriptome/genetics , Vertebral Artery Dissection/genetics , Case-Control Studies
3.
Sci Rep ; 12(1): 13016, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906446

ABSTRACT

The Mezmaiskaya cave is located on the North Caucasus near the border that divides Europe and Asia. Previously, fossil remains for two Neanderthals were reported from Mezmaiskaya Cave. A tooth from the third archaic hominin specimen (Mezmaiskaya 3) was retrieved from layer 3 in Mezmaiskaya Cave. We performed genome sequencing of Mezmaiskaya 3. Analysis of partial nuclear genome sequence revealed that it belongs to a Homo sapiens neanderthalensis female. Based on a high-coverage mitochondrial genome sequence, we demonstrated that the relationships of Mezmaiskaya 3 to Mezmaiskaya 1 and Stajnia S5000 individuals were closer than those to other Neanderthals. Our data demonstrate the close genetic connections between the early Middle Palaeolithic Neanderthals that were replaced by genetically distant later group in the same geographic areas. Based on mitochondrial DNA (mtDNA) data, we suggest that Mezmaiskaya 3 was the latest Neanderthal individual from the early Neanderthal's branches. We proposed a hierarchical nomenclature for the mtDNA haplogroups of Neanderthals. In addition, we retrieved ancestral mtDNA mutations in presumably functional sites fixed in the Neanderthal clades, and also provided the first data showing mtDNA heteroplasmy in Neanderthal specimen.


Subject(s)
Hominidae , Neanderthals , Animals , DNA, Mitochondrial/genetics , Female , Fossils , Genomics , Hominidae/genetics , Humans , Neanderthals/genetics
4.
Sci Rep ; 12(1): 10483, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729186

ABSTRACT

Sable (Martes zibellina) and American mink (Neogale vison) are valuable species characterized by a variety of coat colour produced on fur farms. Black crystal fur phenotype is Mendelian codominant trait: heterozygous animals (Cr/ +) have white guard hairs scattered predominantly on the spine and the head, while homozygous (Cr/Cr) minks have coats resembling the Himalayan (ch/ch) or white Hedlund (h/h) types. It is one of the most recent of more than 35 currently known phenotypic traits of fur colour in American mink. Black crystal fur phenotype was first described in 1984 in the Russian population of mink, which had undergone selection for domestic defensive response to humans. Here, we performed whole-genome sequencing of American mink with Cr/Cr phenotype. We identified a missense mutation in the gene encoding the α-COP subunit of the COPI complex (COPA). The COPI complex mediates retrograde trafficking from the Golgi system to the endoplasmic reticulum and sorting of transmembrane proteins. We observed an interaction between a newly identified mutation in the COPA gene and a mutation in the microphthalmia-associated transcription factor (MITF), the latter mutation led to the formation of the white Hedlund (h/h) phenotype. Double heterozygotes for these mutations have an entirely white coat and a black-eyed phenotype similar to the phenotype of Cr/Cr or h/h minks. Our data could be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.


Subject(s)
Epistasis, Genetic , Mustelidae , Animals , Hair Color/genetics , Mink/genetics , Mustelidae/genetics , Phenotype
5.
Biochemistry (Mosc) ; 87(3): 242-258, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35526849

ABSTRACT

Paleogenomics is one of the urgent and promising areas of interdisciplinary research in the today's world science. New genomic methods of ancient DNA (aDNA) analysis, such as next generation sequencing (NGS) technologies, make it possible not only to obtain detailed genetic information about historical and prehistoric human populations, but also to study individual microbial and viral pathogens and microbiomes from different ancient and historical objects. Studies of aDNA of pathogens by reconstructing their genomes have so far yielded complete sequences of the ancient pathogens that played significant role in the history of the world: Yersinia pestis (plague), Variola virus (smallpox), Vibrio cholerae (cholera), HBV (hepatitis B virus), as well as the equally important endemic human infectious agents: Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy), and Treponema pallidum (syphilis). Genomic data from these pathogens complemented the information previously obtained by paleopathologists and allowed not only to identify pathogens from the past pandemics, but also to recognize the pathogen lineages that are now extinct, to refine chronology of the pathogen appearance in human populations, and to reconstruct evolutionary history of the pathogens that are still relevant to public health today. In this review, we describe state-of-the-art genomic research of the origins and evolution of many ancient pathogens and viruses and examine mechanisms of the emergence and spread of the ancient infections in the mankind history.


Subject(s)
Genomics , Yersinia pestis , DNA, Ancient , Genomics/methods , History, Ancient , Humans , Mycobacterium leprae/genetics , Paleontology , Yersinia pestis/genetics
6.
Anim Genet ; 53(4): 522-525, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35481560

ABSTRACT

The classical genetic analysis describes more 35 mutations that are involved in the formation of the American mink (Neovison vison) fur colour phenotype. To date, only eight of these mutations have been linked to specific genes. Shadow is a member of the commercially valuable Black cross colour family. Here, we performed whole-genome sequencing of the American mink with a Shadow Silverblue (Sh /+ p/p) phenotype. We identified a missense mutation (c.2374 G>T) in the gene encoding the KIT proto-oncogene, receptor tyrosine kinase gene (KIT), which plays a critical role in melanogenesis as well as in the survival, growth and development of other cell types. The reported mutation results in amino acid substitution p.Asp792Tyr in a highly conserved catalytic loop of the KIT protein.


Subject(s)
Mink , Mutation, Missense , Animals , Color , Hair Color/genetics , Mink/genetics , Mutation , Phenotype
7.
Genes (Basel) ; 13(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35205209

ABSTRACT

FKBP51 is a key stress-responsive regulator of the hypothalamic-pituitary-adrenal axis. To elucidate the contribution of rs1360780 FKBP5 C/T alleles to aging and longevity, we genotyped FKBP5 in a cohort of 800 non-demented and Alzheimer's disease (AD) subjects of different age, taking into account the allele state of ApoE ε4, the major risk factor for AD. Furthermore, we searched for the association of FKBP5 with subcohorts of non-demented subjects evaluated for anxiety and resting-state quantitative EEG characteristics, associated with cognitive, emotional, and functional brain activities. We observed that increased state anxiety scores depend on the combination of the FKBP5 and ApoE genotypes and on the DNA methylation state of the FKBP5 promoter and ApoE genotype. We also found a significant gender-dependent correlation between FKBP5 promoter methylation and alpha-, delta-, and theta-rhythms. Analysis of the FKBP5 expression in an independent cohort revealed a significant upregulation of FKBP5 in females versus males. Our data suggest a synergistic effect of the stress-associated (FKBP5) and neurodegeneration-associated (ApoE) gene alleles on anxiety and the gender-dependent effect of FKBP5 on neurophysiological brain activity.


Subject(s)
Anxiety , Apolipoproteins E , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Tacrolimus Binding Proteins , Anxiety/genetics , Apolipoproteins E/genetics , Electroencephalography , Epigenesis, Genetic , Female , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary-Adrenal System/metabolism , Tacrolimus Binding Proteins/genetics
8.
Genes (Basel) ; 12(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33503951

ABSTRACT

Sable (Martes zibellina) is one of the most valuable species of fur animals. Wild-type sable fur color varies from sandy-yellow to black. Farm breeding and 90 years of directional selection have resulted in a generation of several sable breeds with a completely black coat color. In 2005, an unusually chocolate (pastel) puppy was born in the Puschkinsky State Fur Farm (Russia). We established that the pastel phenotype was inherited as a Mendelian autosomal recessive trait. We performed whole-genome sequencing of the sables with pastel fur color and identified a frameshift variant in the gene encoding membrane-bound tyrosinase-like enzyme (TYRP1). TYRP1 is involved in the stability of the tyrosinase enzyme and participates in the synthesis of eumelanin. These data represent the first reported variant linked to fur color in sables and reveal the molecular genetic basis for pastel color pigmentation. These data are also useful for tracking economically valuable fur traits in sable breeding programs.


Subject(s)
Animal Fur , Frameshift Mutation , Genomics , Mustelidae/genetics , Oxidoreductases/genetics , Phenotype , Pigmentation , Animals , Genetic Association Studies , Genomics/methods , Inheritance Patterns , Pedigree
9.
Sci Rep ; 10(1): 15876, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985525

ABSTRACT

Over 35 fur colours have been described in American mink (Neovison vison), only six of which have been previously linked to specific genes. Moyle fur colour belongs to a wide group of brownish colours that are highly similar to each other, which complicates selection and breeding procedures. We performed whole genome sequencing for two American minks with Moyle (m/m) and Violet (a/a m/m /p/p) phenotypes. We identified two frame-shift mutations in the gene encoding Ras-related protein-38 (RAB38), which regulates the trafficking of tyrosinase-containing vesicles to maturing melanosomes. The results highlight the role of RAB38 in the biogenesis of melanosomes and melanin and the genetic mechanism contributing to hair colour variety and intensity. These data are also useful for tracking economically valuable fur traits in mink breeding programmes.


Subject(s)
Animal Fur/anatomy & histology , Genomics , Mink/anatomy & histology , Mink/genetics , Mutation , Phenotype , rab GTP-Binding Proteins/genetics , Animals , Base Sequence , Pigmentation
10.
Sci Rep ; 9(1): 4581, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872653

ABSTRACT

The fur colour of American mink (Neovison vison) involves over 35 traits, but only three of these have been linked to specific genes. Despite being the most popular, coat colours Silverblue and Hedlund white remain uncharacterized genetically. The former is the first genetic mutant of fur colour identified in minks, while the latter is a commercially valuable phenotype that can be dyed easily. Here, we performed the whole genome sequencing for two American mink breeds with Silverblue and Hedlund white coats. We identified mutations in splice donor sites of genes coding melanophilin (MLPH) and microphthalmia-associated transcription factor (MITF) that regulate melanosome transport and neural-crest-derived melanocyte development, respectively. Both mutations cause mRNA splicing impairments that lead to a shift in open reading frames of MLPH and MITF. We conclude that our data should be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.


Subject(s)
Genetic Association Studies , Genome , Genomics , Mink/genetics , Mutation , Phenotype , Adaptor Proteins, Signal Transducing/genetics , Alleles , Alternative Splicing , Animals , Genetic Association Studies/methods , Genomics/methods , Genotype , Models, Biological , RNA Splice Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...