Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 105(6): 1748-1757, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33206018

ABSTRACT

Pseudomonas syringae pv. actinidiae is the etiological agent of kiwifruit canker disease, causing severe economic losses in kiwifruit production areas around the world. Rapid diagnosis, understanding of bacterial virulence, and rate of infection in kiwifruit cultivars are important in applying effective measures of disease control. P. syringae pv. actinidiae load in kiwifruit is currently determined by a labor-intense colony counting method with no high-throughput and specific quantification method being validated. In this work, we used three alternative P. syringae pv. actinidiae quantification methods in two infected kiwifruit cultivars: start of growth time, quantitative PCR (qPCR), and droplet digital PCR (ddPCR). Method performance in each case was compared with the colony counting method. Methods were validated using calibration curves obtained with serial dilutions of P. syringae pv. actinidiae biovar 3 (Psa3) inoculum and standard growth curves obtained from kiwifruit samples infected with Psa3 inoculum. All three alternative methods showed high correlation (r > 0.85) with the colony counting method. qPCR and ddPCR were very specific, sensitive (5 × 102 CFU/cm2), highly correlated to each other (r = 0.955), and flexible, allowing for sample storage. The inclusion of a kiwifruit biomass marker increased the methods' accuracy. The qPCR method was efficient and allowed for high-throughput processing, and the ddPCR method showed highly accurate results but was more expensive and time consuming. While not ideal for high-throughput processing, ddPCR was useful in developing accurate standard curves for the qPCR method. The combination of the two methods is high-throughput, specific for Psa3 quantification, and useful for research studies (e.g., disease phenotyping and host-pathogen interactions).


Subject(s)
Actinidia , Pseudomonas syringae , Fruit , Plant Diseases , Pseudomonas syringae/genetics , Real-Time Polymerase Chain Reaction
2.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29661190

ABSTRACT

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Subject(s)
Actinidia/genetics , Genome, Plant , Genes, Plant , Genotype , Molecular Sequence Annotation , Plant Proteins/genetics
3.
Theor Appl Genet ; 127(3): 549-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24306317

ABSTRACT

Non-preferential chromosome pairing was identified in tetraploid Actinidia chinensis and a higher mean multivalent frequency in pollen mother cells was found in colchine-induced tetraploids of A. chinensis compared with naturally occurring tetraploids. Diploid and tetraploid Actinidia chinensis are used for the development of kiwifruit cultivars. Diploid germplasm can be exploited in a tetraploid breeding programme via unreduced (2n) gametes and chemical-induced chromosome doubling of diploid cultivars and selections. Meiotic chromosome behaviour in diploid A. chinensis 'Hort16A' and colchicine-induced tetraploids from 'Hort16A' was analysed and compared with that in a diploid male and tetraploid males of A. chinensis raised from seeds sourced from the wild in China. Both naturally occurring and induced tetraploids formed multivalents, but colchicine-induced tetraploids showed a higher mean multivalent frequency in the pollen mother cells. Lagging chromosomes at anaphase I and II were observed at low frequencies in the colchicine-induced tetraploids. To investigate whether preferential or non-preferential chromosome pairing occurs in tetraploid A. chinensis, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of crosses between A. chinensis (4x) and A. arguta (4x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the tetraploid A. chinensis parent.


Subject(s)
Actinidia/genetics , Chromosome Pairing , Diploidy , Tetraploidy , Alleles , China , Chromosomes, Plant/genetics , DNA, Plant/genetics , Fruit/genetics , Genetic Markers , Meiosis , Microsatellite Repeats , Pollen/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...