Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(1): 370-377, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38217870

ABSTRACT

Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.


Subject(s)
Light , Plant Stomata , Vapor Pressure , Plant Stomata/physiology , Magnoliopsida/physiology , Plant Transpiration/physiology , Ferns/physiology , Biomechanical Phenomena , Plant Epidermis/physiology , Plant Epidermis/cytology , Marsileaceae/physiology
2.
Plant Cell Environ ; 47(2): 497-510, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37905689

ABSTRACT

The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p-type ABA dynamics in the conifer Callitris rhomboidea and the highly drought-resistant angiosperm Umbellularia californica. We measured leaf water potentials (Ψl ), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non-fatal drought. Both species displayed a p-type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p-type species may be conserved across embolism-resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation as Ψl becomes more negative than turgor loss.


Subject(s)
Embolism , Magnoliopsida , Tracheophyta , Plant Stomata/physiology , Droughts , Plant Leaves/metabolism , Abscisic Acid/metabolism , Water/metabolism , Magnoliopsida/physiology
3.
Plant Physiol ; 194(2): 732-740, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37850913

ABSTRACT

Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.


Subject(s)
Magnoliopsida , Plant Stomata , Plant Stomata/physiology , Vapor Pressure , Magnoliopsida/physiology , Abscisic Acid/pharmacology , Plant Leaves/physiology , Water , Plant Transpiration/physiology
4.
J Exp Bot ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38155578

ABSTRACT

The phytohormone abscisic acid (ABA) plays a major role in closing the stomata of angiosperms. However, recent reports of some angiosperm species having a peaking-type ABA dynamic, in which under extreme drought ABA levels decline to pre-stressed levels, raises the possibility that passive stomatal closure by leaf water status alone can occur in species from this lineage. To test this hypothesis, we conducted instantaneous rehydration experiments in the peaking-type species Umbellularia californica through a long-term drought, in which ABA levels declined to pre-stress levels, yet stomata remain closed. We found that when ABA levels were lowest during extreme drought, stomata of U. californica were passively closed by leaf water status alone, with stomata reopening rapidly to maximum rates of gas exchange on instantaneous rehydration. This contrasts with leaves early in drought, in which ABA levels were highest and stomata did not reopen on instantaneous rehydration. The transition from ABA-driven stomatal closure to passively driven stomatal closure as drought progresses in this species occurs at very low water potentials facilitated by highly embolism-resistant xylem. These results have important implications for understanding stomatal control during drought in angiosperms.

5.
New Phytol ; 237(4): 1242-1255, 2023 02.
Article in English | MEDLINE | ID: mdl-36307967

ABSTRACT

The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants.


Subject(s)
Tracheophyta , Water , Plant Leaves , Xylem , Poaceae
6.
Physiol Plant ; 160(2): 201-208, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28075015

ABSTRACT

Drought can result in severely decreased leaf area development, which impacts plant growth and yield. However, rarely is leaf emergence or leaf expansion separated to resolve the relative sensitivity to water-deficit of these two processes. Experiments were undertaken to impose drought over approximately 2 weeks for eight cowpea (Vigna unguiculata) genotypes grown in pots under controlled environmental conditions. Daily measures of phyllochron index (PI, leaf emergence) and leaf area increase (leaf expansion) were obtained. Each of these measures was referenced against volumetric soil water content, i.e. fraction transpirable soil water. Although there was no clear difference between leaf emergence and leaf expansion in sensitivity to drying soil, both processes were more sensitive to soil drying than plant transpiration rate. Genotypic differences in the soil water content at the initiation of the decline in PI were identified. However, no consistent difference in sensitivity to water-deficit in leaf expansion was found. The difference in leaf emergence among genotypes in sensitivity to soil drying can now be exploited to provide guidance for plant improvement and crop yield increase.


Subject(s)
Plant Leaves/metabolism , Soil/chemistry , Vigna/metabolism , Water/metabolism , Droughts , Genotype , Plant Leaves/physiology , Plant Transpiration/physiology , Vigna/physiology
7.
Planta ; 245(4): 729-735, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27999989

ABSTRACT

MAIN CONCLUSION: Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.


Subject(s)
Plant Development , High-Throughput Screening Assays/methods , Phenotype , Plant Development/physiology , Plant Leaves/growth & development , Plant Transpiration/physiology , Plants , Soil , Glycine max/growth & development , Glycine max/physiology , Triticum/growth & development , Triticum/physiology , Vigna/growth & development , Vigna/physiology , Water Supply , Zea mays/growth & development , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...