Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998358

ABSTRACT

This study examines the process of using injection moulding to join two different materials to manufacture bi-component moulded products with improved performance characteristics. The two-component process, which combines the advantages of two different technologies-the high efficiency of the injection moulding process and the excellent mechanical properties of long glass fibre composites produced by resin transfer moulding (RTM) technology-offers a particular advantage and improved applicability of the prepared lightweight products in both the automotive and aerospace sectors. The composite studied here consists of Elium® thermoplastic resin (30%) reinforced with unwoven glass fibre fabric (70%) using the RTM process. The Elium® composite sample is consequently used as an insert overmoulded with polybutylene terephthalate (PBT) homopolymer reinforced with 20% w/w of short glass fibre through injection moulding. The influence of different mould temperatures and surface treatments on the adhesion between the materials used is investigated by evaluating the mechanical performance using tensile shear strength tests. It was found that while an increase in mould temperature from 40 °C to 120 °C resulted in a doubling of the initial average bond strength between untreated Elium® RTM inserts and overmoulded PBT parts (0.9 MPa), sandblasting the inserts ensured a further tripling of the bond strength of the composites to a value of 5.4 MPa.

2.
Materials (Basel) ; 17(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38793469

ABSTRACT

This work is dedicated to the design of flexible composite elements, specifically leaf springs. The design of these flexible composite elements took in consideration the technologies, materials and intermediate goods that are available and useable in laboratory manufacturing and the possibility for the transfer of gained knowledge to industrial practice. This work deals with individual types of materials and their processability and usability for the manufacturing of composite products exposed to cyclic stress. The impact of the designed lay-up diagrams and cyclic load boundary on the fatigue behaviour of manufactured specimens was used to evaluate the effect of cyclic stressing. Based on this assessment, a conclusion and recommendation were formulated for the serial manufacturing of flexible composite elements.

3.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373072

ABSTRACT

Polypropylene (PP) belongs among the most important commodity plastics due to its widespread application. The color of the PP products can be achieved by the addition of pigments, which can dramatically affect its material characteristics. To maintain product consistency (dimensional, mechanical, and optical), knowledge of these implications is of great importance. This study investigates the effect of transparent/opaque green masterbatches (MBs) and their concentration on the physico-mechanical and optical properties of PP produced by injection molding. The results showed that selected pigments had different nucleating abilities, affecting the dimensional stability and crystallinity of the product. The rheological properties of pigmented PP melts were affected as well. Mechanical testing showed that the presence of both pigments increased the tensile strength and Young's modulus, while the elongation at break was significantly increased only for the opaque MB. The impact toughness of colored PP with both MBs remained similar to that of neat PP. The optical properties were well controlled by the dosing of MBs, and were further related to the RAL color standards, as demonstrated by CIE color space analysis. Finally, the selection of appropriate pigments for PP should be considered, especially in areas where dimensional and color stability, as well as product safety, are highly important.


Subject(s)
Plastics , Polypropylenes , Elastic Modulus , Fungi
4.
Polymers (Basel) ; 13(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34833314

ABSTRACT

A combination of mechanical and chemical treatments was utilized to modify the surface textures of copper and duralumin inserts in order to enhance the adhesion at the metal-polymer interface and provide an adhesive joint with a high loadbearing capacity. Pretreatment of the surfaces with sandblasting was followed by etching with various chemical mixtures. The resulting surface textures were evaluated with a scanning electron microscope (SEM) and an optical confocal microscope. Surface geometry parameters (Sa, Sz, and Sdr) were measured and their relationships to the adhesion joint strength were studied. It was found that the virgin and purely mechanically treated inserts resulted in joints with poor loadbearing capacity, while a hundredfold (duralumin) and ninetyfold (copper) increase in the force to break was observed for some combinations of mechanical and chemical treatments. It was determined that the critical factor is overcoming a certain surface roughness threshold with the mechanical pretreatment to maximize the potential of the mechanical/chemical approach for the particular combination of material and etchant.

SELECTION OF CITATIONS
SEARCH DETAIL
...