Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 4): 119115, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729413

ABSTRACT

Thermokarst (thaw) lakes of permafrost peatlands are among the most important sentinels of climate change and sizable contributors of greenhouse gas emissions (GHG) in high latitudes. These lakes are humic, often acidic and exhibit fast growing/drainage depending on the local environmental and permafrost thaw. In contrast to good knowledge of the thermokarst lake water hydrochemistry and GHG fluxes, the sediments pore waters remain virtually unknown, despite the fact that these are hot spots of biogeochemical processes including GHG generation. Towards better understating of dissolved organic matter (DOM) quality at the lake water - sediment interface and in the sediments pore waters, here we studied concentration and optical (UV, visual) properties of DOM of 11 thermokarst lakes located in four permafrost zones of Western Siberia Lowland. We found systematic evaluation of DOM concentration, SUVA and various optical parameters along the vertical profile of lake sediments. The lake size and hence, the stage of lake development, had generally weak control on DOM quality. The permafrost zone exhibited clear impact on DOM porewater concentration, optical characteristics, aromaticity and weight average molecular weight (WAMW). The lowest quality of DOM, reflected in highest SUVA and WAMW, corresponding to the dominance of terrestrial sources, was observed at the southern boundary of the permafrost, in the sporadic/discontinuous zone. This suggests active mobilization of organic matter leachates from the interstitial peat and soil porewaters to the lake, presumably via subsurface or suprapermafrost influx. Applying a substitute space for time scenario for future evolution of OM characteristics in thermokarst lake sediments of Western Siberia, we foresee a decrease of DOM quality, molecular weight and potential bioavailability in lakes of continuous permafrost zone, and an increase in these parameters in the sporadic/discontinuous permafrost zone.


Subject(s)
Geologic Sediments , Lakes , Permafrost , Siberia , Lakes/chemistry , Geologic Sediments/chemistry , Geologic Sediments/analysis , Environmental Monitoring , Humic Substances/analysis , Organic Chemicals/analysis
2.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432389

ABSTRACT

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Subject(s)
Cladocera , Copepoda , Permafrost , Rotifera , Animals , Seasons , Siberia , Zooplankton/physiology , Lakes/chemistry , Rotifera/physiology , Phytoplankton/physiology , Copepoda/physiology , Carbon , Water
3.
Glob Chang Biol ; 30(1): e17120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273495

ABSTRACT

Shallow thermokarst lakes are important sources of greenhouse gases (GHGs) such as methane (CH4 ) and carbon dioxide (CO2 ) resulting from continuous permafrost thawing due to global warming. Concentrations of GHGs dissolved in water typically increase with decreasing lake size due to coastal abrasion and organic matter delivery. We hypothesized that (i) CH4 oxidation depends on the natural oxygenation gradient in the lake water and sediments and increases with lake size because of stronger wind-induced water mixing; (ii) CO2 production increases with decreasing lake size, following the dissolved organic matter gradient; and (iii) both processes are more intensive in the upper than deeper sediments due to the in situ gradients of oxygen (O2 ) and bioavailable carbon. We estimated aerobic CH4 oxidation potentials and CO2 production based on the injection of 13 C-labeled CH4 in the 0-10 cm and 10-20 cm sediment depths of small (~300 m2 ), medium (~3000 m2 ), and large (~106 m2 ) shallow thermokarst lakes in the West Siberian Lowland. The CO2 production was 1.4-3.5 times stronger in the upper sediments than in the 10-20 cm depth and increased from large (158 ± 18 nmol CO2 g-1 sediment d.w. h-1 ) to medium and small (192 ± 17 nmol CO2 g-1 h-1 ) lakes. Methane oxidation in the upper sediments was similar in all lakes, while at depth, large lakes had 14- and 74-fold faster oxidation rates (5.1 ± 0.5 nmol CH4 -derived CO2 g-1 h-1 ) than small and medium lakes, respectively. This was attributed to the higher O2 concentration in large lakes due to the more intense wind-induced water turbulence and mixing than in smaller lakes. From a global perspective, the CH4 oxidation potential confirms the key role of thermokarst lakes as an important hotspot for GHG emissions, which increase with the decreasing lake size.


Subject(s)
Greenhouse Gases , Lakes , Methane/analysis , Carbon Dioxide/analysis , Oxidation-Reduction , Water
4.
Environ Sci Pollut Res Int ; 30(1): 823-836, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35904738

ABSTRACT

To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B), and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents, and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.


Subject(s)
Soil , Trace Elements , Soil/chemistry , Ice , Freezing , Metals , Dissolved Organic Matter , Bacteria
5.
Sci Total Environ ; 806(Pt 3): 151250, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34710410

ABSTRACT

Shallow thaw (thermokarst) lakes abundant in regions of permafrost-affected peatlands represent important sources of carbon dioxide and methane emission to the atmosphere, however the quantitative parameters of phytoplankton communities which control the C cycle in these lakes remain poorly known. This is especially true considering the roles of permafrost, hydrochemical composition of lakes, lake sizes and season as major governing factors on phytoplankton abundance and biodiversity. In this work, we quantified phytoplankton characteristics of 27 thermokarst lakes (sizes ranging from 115 m2 to 1.24 km2) sampled in spring, summer and autumn across a permafrost gradient (isolated, sporadic, discontinuous and continuous zone) in the Western Siberia Lowland (WSL). The biodiversity indices were highest during all seasons in lakes of the continuous permafrost zone and rather similar in lakes of isolated, sporadic and discontinuous permafrost zone. Considering all seasons and permafrost zones, the biomass and cell number of phytoplankton correlated with Dissolved Organic Carbon (DOC), phosphate, and some metal micro-nutrients (Ni, Zn). The strongest correlations were observed for Cyanophycea during summer, with pH, Ni, Cu, Zn, Sr, Ba (cell number) and Cu, Zn, Ba (biomass), and during autumn, with DOC, K, Cr, Cu, Zn, Ba, Cd, Pb (biomass). Using a substituting space for time approach for climate warming and permafrost thaw and suggesting a shift in permafrost boundaries northward, we foresee an increase in cell number and biomass in continuous permafrost zone in spring and summer, and a decrease in phytoplankton abundance in the discontinuous and sporadic permafrost zones. The biodiversity of phytoplankton in the continuous permafrost zone might decrease whereas in other zones, it may not exhibit any sizably change. However, in case of strong deepening of the active layer down to underlaying mineral horizons, and the release of some limiting nutrients (Si, P) due to enhanced connectivity of the lake with groundwater, the share of cyanobacteria and diatoms may increase.


Subject(s)
Permafrost , Biodiversity , Lakes , Nutrients , Phytoplankton
6.
Sci Total Environ ; 763: 144201, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33385841

ABSTRACT

The chemical composition of thermokarst lake ecosystem components is a crucial indicator of current climate change and permafrost thaw. Despite high importance of macrophytes in shallow permafrost thaw lakes for control of major and trace nutrients in lake water, the trace element (TE) partitioning between macrophytes and lake water and sediments in the permafrost regions remains virtually unknown. Here we sampled dominant macrophytes in thermokarst lakes of discontinuous and continuous permafrost zones in the Western Siberia Lowland (WSL) and measured major and trace elements in plant biomass, lake water, lake sediments and sediment porewater. All six plant species (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.) sizably accumulated macronutrients (Na, Mg, Ca), micronutrients (B, Mo, Nu, Cu, Zn, Co) and toxicants (As, Cd). Accumulation of other trace elements, including rare earth elements (REE), in macrophytes relative to pore waters and sediments was highly variable among species. Using miltiparametric statistics, we described the behavior of ТЕ across two permafrost zones and identified several group of elements depending on their sources in the lake ecosystems and their affinity to sediments and macrophytes. Under future climate warming and shifting the permafrost border to the north, we anticipate an increasing uptake of heavy metals and lithogenic low mobile elements such as Ti, Al, Cr, As, Cu, Fe, Ni, Ga, Zr, and REEs by macrophytes in the discontinuous permafrost zone and Ba, Zn, Pb and Cd in the continuous permafrost zone. This may eventually diminish transport of metal micronutrients and geochemical tracers from soils to lakes and rivers and further to the Arctic Ocean.


Subject(s)
Metals, Heavy , Permafrost , Water Pollutants, Chemical , Arctic Regions , Ecosystem , Environmental Monitoring , Geologic Sediments , Lakes , Metals, Heavy/analysis , Siberia , Water Pollutants, Chemical/analysis
7.
Environ Pollut ; 254(Pt B): 113083, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31473386

ABSTRACT

Arctic permafrost soils contain large amounts of organic carbon and the pollutant mercury (Hg). Arctic warming and associated changes in hydrology, biogeochemistry and ecology risk mobilizing soil Hg to rivers and to the Arctic Ocean, yet little is known about the quantity, timing and mechanisms involved. Here we investigate seasonal particulate Hg (PHg) and organic carbon (POC) export in 32 small and medium rivers across a 1700 km latitudinal permafrost transect of the western Siberian Lowland. The PHg concentrations in suspended matter increased with decreasing watershed size. This underlines the significance of POC-rich small streams and wetlands in PHg export from watersheds. Maximum PHg concentrations and export fluxes were located in rivers at the beginning of permafrost zone (sporadic permafrost). We suggest this reflects enhanced Hg mobilization at the permafrost boundary, due to maximal depth of the thawed peat layer. Both the thickness of the active (unfrozen) peat layer and PHg run-off progressively move to the north during the summer and fall seasons, thus leading to maximal PHg export at the sporadic to discontinuous permafrost zone. The discharge-weighed PHg:POC ratio in western Siberian rivers (2.7 ±â€¯0.5 µg Hg: g C) extrapolated to the whole Ob River basin yields a PHg flux of 1.5 ±â€¯0.3 Mg y-1, consistent with previous estimates. For current climate warming and permafrost thaw scenarios in western Siberia, we predict that a northward shift of permafrost boundaries and increase of active layer depth may enhance the PHg export by small rivers to the Arctic Ocean by a factor of two over the next 10-50 years.


Subject(s)
Mercury/analysis , Permafrost/chemistry , Soil Pollutants/analysis , Arctic Regions , Climate , Hydrology , Rivers/chemistry , Seasons , Siberia , Water Pollutants, Chemical/analysis
8.
Environ Sci Technol ; 52(18): 10254-10262, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30148609

ABSTRACT

Little is known about the sources and processing of selenium, an important toxicant and essential micronutrient, within boreal and sub-arctic environments. Upon climate warming and permafrost thaw, the behavior of Se in northern peatlands becomes an issue of major concern, because a sizable amount of Se can be emitted to the atmosphere from thawing soils and inland water surfaces and exported to downstream waters, thus impacting the Arctic biota. Working toward providing a first-order assessment of spatial and temporal variation of Se concentration in thermokarst waters of the largest frozen peatland in the world, we sampled thaw lakes and rivers across a 750-km latitudinal profile. This profile covered sporadic, discontinuous, and continuous permafrost regions of western Siberia Lowland (WSL), where we measured dissolved (<0.45 µm) Se concentration during spring (June), summer (August), and autumn (September). We found maximum Se concentration in the discontinuous permafrost zone. Considering all sampled lakes, Se exhibited linear relationship ( R2 = 0.7 to 0.9, p < 0.05, n ≈ 70) with dissolved organic carbon (DOC) concentration during summer and autumn. Across the permafrost gradient, the lakes in discontinuous permafrost regions demonstrated stronger relationship with DOC and UV-absorbance compared to lakes in sporadic/isolated and continuous permafrost zones. Both seasonal and spatial features of Se distribution in thermokarst lakes and ponds suggest that Se is mainly released during thawing of frozen peat. Mobilization and immobilization of Se within peat-lake-river watersheds likely occurs as organic and organo-Fe, Al colloids, probably associated with reduced and elemental Se forms. The increase of active layer thickness may enhance leaching of Se in the form of organic complexes with aromatic carbon from the deep horizons of the peat profile. Further, the northward shift of permafrost boundaries in WSL may sizably increase Se concentration in lakes of continuous permafrost zone.


Subject(s)
Permafrost , Selenium , Arctic Regions , Lakes , Seasons , Siberia
9.
Sci Total Environ ; 580: 245-257, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28011026

ABSTRACT

Thaw of frozen peat in discontinuous permafrost zone produces a significant number of thermokarst lakes, which are known to contribute to Green House Gases (GHG) emission in the atmosphere. In palsa peatland of western Siberia, the thermokarst lake formation includes soil subsidences, lichen submergence and peat abrasion, leading to lateral spreading of the lake border, often intensified by ground fires. Mesocosm experiments were conducted during 3weeks on two thermokarst lake waters interacting in 30-L tanks with surface horizon of peat, the dominant ground vegetation (lichen Cladonia sp.) and the ash produced by lichen burning at 450°C. The obtained results allowed a better understanding of physico-chemical factors controlling the enrichment of thermokarst lake water in organic carbon and metals, and evaluating CO2 sequestration/emission potential. The changes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), major element and divalent metal concentration in response to peat and lichen biomass addition were less than a factor of 2 over full duration of the experiment. Iron (Fe) concentration in the lake water decreased by a factor of 2 to 3 after the addition of peat and lichen biomass. The concentration of low-soluble trivalent and tetravalent hydrolysates decreased by ca. 30 to 50%, presumably due to their co-precipitation with Fe hydroxide. The dissolved carbon dioxide (CO2) in tank with lichen increased by a factor of 5.5±0.5, likely due to respiration of algal component in closed environment. Strong enrichment of the lake water in DIC, P, K, Ca, Mg, Si, Al, Ti, Mn, Mo, Rb, As, Sb and U upon the ash addition persisted over full duration of experiments and was significant (p<0.0001) compared to peat and lichen biomass treatments. These elements may serve as indicators of ground fire impact on thermokarst lake water's chemistry. The overall effect of ash leaching on aquatic ecosystems after ground fire of frozen Siberian peatland is predicted to be much stronger than that currently recognized for non-permafrost regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...