Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(24): 4461-4478.e13, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38029752

ABSTRACT

Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Genome-Wide Association Study , Transcription, Genetic , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA 3' End Processing/genetics
2.
Genes Dev ; 35(17-18): 1290-1303, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34385261

ABSTRACT

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Polyadenylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Nat Commun ; 11(1): 5993, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239638

ABSTRACT

A hallmark of type I CRISPR-Cas systems is the presence of Cas3, which contains both the nuclease and helicase activities required for DNA cleavage during interference. In subtype I-D systems, however, the histidine-aspartate (HD) nuclease domain is encoded as part of a Cas10-like large effector complex subunit and the helicase activity in a separate Cas3' subunit, but the functional and mechanistic consequences of this organisation are not currently understood. Here we show that the Sulfolobus islandicus type I-D Cas10d large subunit exhibits an unusual domain architecture consisting of a Cas3-like HD nuclease domain fused to a degenerate polymerase fold and a C-terminal domain structurally similar to Cas11. Crystal structures of Cas10d both in isolation and bound to S. islandicus rod-shaped virus 3 AcrID1 reveal that the anti-CRISPR protein sequesters the large subunit in a non-functional state unable to form a cleavage-competent effector complex. The architecture of Cas10d suggests that the type I-D effector complex is similar to those found in type III CRISPR-Cas systems and that this feature is specifically exploited by phages for anti-CRISPR defence.


Subject(s)
Archaeal Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Sulfolobus/genetics , Viral Proteins/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/ultrastructure , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/ultrastructure , CRISPR-Cas Systems/genetics , DNA Cleavage , Host-Pathogen Interactions/genetics , Protein Domains/genetics , Repressor Proteins/genetics , Rudiviridae/genetics , Rudiviridae/metabolism , Rudiviridae/pathogenicity , Sulfolobus/virology , Viral Proteins/genetics , Viral Proteins/ultrastructure
4.
Microbiol Mol Biol Rev ; 83(1)2019 03.
Article in English | MEDLINE | ID: mdl-30567937

ABSTRACT

Ribosyl 1,5-bisphosphate (PRibP) was discovered 65 years ago and was believed to be an important intermediate in ribonucleotide metabolism, a role immediately taken over by its "big brother" phosphoribosyldiphosphate. Only recently has PRibP come back into focus as an important player in the metabolism of ribonucleotides with the discovery of the pentose bisphosphate pathway that comprises, among others, the intermediates PRibP and ribulose 1,5-bisphosphate (cf. ribose 5-phosphate and ribulose 5-phosphate of the pentose phosphate pathway). Enzymes of several pathways produce and utilize PRibP not only in ribonucleotide metabolism but also in the catabolism of phosphonates, i.e., compounds containing a carbon-phosphorus bond. Pathways for PRibP metabolism are found in all three domains of life, most prominently among organisms of the archaeal domain, where they have been identified either experimentally or by bioinformatic analysis within all of the four main taxonomic groups, Euryarchaeota, TACK, DPANN, and Asgard. Advances in molecular genetics of archaea have greatly improved the understanding of the physiology of PRibP metabolism, and reconciliation of molecular enzymology and three-dimensional structure analysis of enzymes producing or utilizing PRibP emphasize the versatility of the compound. Finally, PRibP is also an effector of several metabolic activities in many organisms, including higher organisms such as mammals. In the present review, we describe all aspects of PRibP metabolism, with emphasis on the biochemical, genetic, and physiological aspects of the enzymes that produce or utilize PRibP. The inclusion of high-resolution structures of relevant enzymes that bind PRibP provides evidence for the flexibility and importance of the compound in metabolism.


Subject(s)
Energy Metabolism , Pentose Phosphate Pathway , Pentosephosphates/chemistry , Pentosephosphates/metabolism , Amino Acid Sequence , Archaea/enzymology , Bacteria/enzymology , Humans , Hydrolases/chemistry , Hydrolases/genetics , Hydrolases/metabolism , Pentosephosphates/genetics , Phosphorylases/chemistry , Phosphorylases/genetics , Phosphorylases/metabolism , Protein Conformation , Ribonucleotides/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
5.
Bioessays ; 40(11): e1800091, 2018 11.
Article in English | MEDLINE | ID: mdl-30198068

ABSTRACT

Bacteria have evolved advanced strategies for surviving during nutritional stress, including expression of specialized enzyme systems that allow them to grow on unusual nutrient sources. Inorganic phosphate (Pi ) is limiting in most ecosystems, hence organisms have developed a sophisticated, enzymatic machinery known as carbon-phosphorus (C-P) lyase, allowing them to extract phosphate from a wide range of phosphonate compounds. These are characterized by a stable covalent bond between carbon and phosphorus making them very hard to break down. Despite the challenges involved in both synthesizing and catabolizing phosphonates, they are widespread in nature. The enzymes required for the bacterial C-P lyase pathway have been identified and for the most part structurally characterized. Nevertheless, the mechanistic principles governing breakdown of phosphonate compounds remain enigmatic. In this review, an overview of the C-P lyase pathway is provided and structural aspects of the involved enzyme complexes are discussed with a special emphasis on the role of ATP-binding cassette (ABC) proteins.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacteria/metabolism , Lyases/metabolism , Organophosphonates/metabolism , Bacteria/enzymology , Phosphorus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...