Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20212021 02 18.
Article in English | MEDLINE | ID: mdl-33599246

ABSTRACT

Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe-gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma's holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html.


Subject(s)
Metadata , Transcriptome , Animals , Computational Biology , Data Curation , Mice , Rats , Sequence Analysis, RNA , Software , Transcriptome/genetics
2.
Biol Psychiatry ; 84(11): 787-796, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30177255

ABSTRACT

BACKGROUND: High-throughput expression analyses of postmortem brain tissue have been widely used to study bipolar disorder and schizophrenia. However, despite the extensive efforts, no consensus has emerged as to the functional interpretation of the findings. We hypothesized that incorporating information on cell type-specific expression would provide new insights. METHODS: We reanalyzed 15 publicly available bulk tissue expression datasets on schizophrenia and bipolar disorder, representing various brain regions from eight different cohorts of subjects (unique subjects: 332 control, 129 bipolar disorder, 341 schizophrenia). We studied changes in the expression profiles of cell type marker genes and evaluated whether these expression profiles could serve as surrogates for relative abundance of their corresponding cells. RESULTS: In both bipolar disorder and schizophrenia, we consistently observed an increase in the expression profiles of cortical astrocytes and a decrease in the expression profiles of fast-spiking parvalbumin interneurons. No changes in astrocyte expression profiles were observed in subcortical regions. Furthermore, we found that many of the genes previously identified as differentially expressed in schizophrenia are highly correlated with the expression profiles of astrocytes or fast-spiking parvalbumin interneurons. CONCLUSIONS: Our results indicate convergence of transcriptome studies of schizophrenia and bipolar disorder on changes in cortical astrocytes and fast-spiking parvalbumin interneurons, providing a unified interpretation of numerous studies. We suggest that these changes can be attributed to alterations in the relative abundance of the cells and are important for understanding the pathophysiology of the disorders.


Subject(s)
Astrocytes/metabolism , Bipolar Disorder/genetics , Parvalbumins/metabolism , Schizophrenia/genetics , Transcriptome , Biomarkers , Bipolar Disorder/metabolism , Brain/metabolism , Brain/physiopathology , Case-Control Studies , Functional Laterality , Humans , Interneurons/metabolism , Schizophrenia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...