Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 68(8): 2329-2338, 2021 08.
Article in English | MEDLINE | ID: mdl-33055022

ABSTRACT

Primary haemostasis is a complex dynamic process, which involves in-flow interactions between platelets and sub-endothelial matrix at the area of the damaged vessel wall. It results in a first haemostatic plug, which stops bleeding, before coagulation ensues and consolidates it. The diagnosis of primary haemostasis defect would benefit from evaluation of the whole sequence of mechanisms involved in platelet plug formation in flow. This work proposes a new approach that is based on characterization of the shear-dependent kinetics that enables the evaluation of the early stages of primary haemostasis. We used a label-free method with a quartz crystal microbalance (QCM) biosensor to measure the platelet deposits over time onto covalently immobilized type I fibrillar collagen. We defined three metrics: total frequency shift, lag time, and growth rate. The measurement was completed at four predefined shear rates prevailing in small vessels (500, 770, 1000 and 1500 s-1) during five minutes of perfusion with anticoagulated normal whole blood. The rate of the frequency shift over the first five minutes was strongly influenced by shear rate conditions, presenting a maximum around 770 s-1, and varying by a factor larger than three in the studied shear rate range. To validate the biosensor signal, the total frequency shift was compared to results obtained by atomic force microscopy (AFM) on final platelet deposits. The results show that shear-dependent kinetic assays are promising as an advanced method for screening of primary haemostasis.


Subject(s)
Biosensing Techniques , Microfluidics , Acoustics , Blood Platelets , Hemostasis , Humans , Kinetics
2.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096764

ABSTRACT

Shear bulk acoustic type of resonant biosensors, such as the quartz crystal microbalance (QCM), give access to label-free in-liquid analysis of surface interactions. The general understanding of the sensing principles was inherited from past developments in biofilms measurements and applied to cells while keeping the same basic assumptions. Thus, the biosensor readouts are still quite often described using 'mass' related terminology. This contribution aims to show that assessment of cell deposits with acoustic biosensors requires a deep understanding of the sensor transduction mechanism. More specifically, the cell deposits should be considered as a structured viscoelastic load and the sensor response depends on both material and topological parameters of the deposits. This shifts the paradigm of acoustic biosensor away from the classical mass loading perspective. As a proof of the concept, we recorded QCM frequency shifts caused by blood platelet deposits on a collagen surface under different rheological conditions and observed the final deposit shape with atomic force microscopy (AFM). The results vividly demonstrate that the frequency shift is highly impacted by the platelet topology on the bio-interface. We support our findings with numerical simulations of viscoelastic unstructured and structured loads in liquid. Both experimental and theoretical studies underline the complexity behind the frequency shift interpretation when acoustic biosensing is used with cell deposits.

3.
Micromachines (Basel) ; 8(10)2017 Oct 14.
Article in English | MEDLINE | ID: mdl-30400497

ABSTRACT

Resonant biosensors are known for their high accuracy and high level of miniaturization. However, their fabrication costs prevent them from being used as disposable sensors and their effective commercial success will depend on their ability to be reused repeatedly. Accordingly, all the parts of the sensor in contact with the fluid need to tolerate the regenerative process which uses different chemicals (H3PO4, H2SO4 based baths) without degrading the characteristics of the sensor. In this paper, we propose a fluidic interface that can meet these requirements, and control the liquid flow uniformity at the surface of the vibrating area. We study different inlet and outlet channel configurations, estimating their performance using numerical simulations based on finite element method (FEM). The interfaces were fabricated using wet chemical etching on Si, which has all the desirable characteristics for a reusable biosensor circuit. Using a glass cover, we could observe the circulation of liquid near the active surface, and by using micro-particle image velocimetry (µPIV) on large surface area we could verify experimentally the effectiveness of the different designs and compare with simulation results.

4.
Sensors (Basel) ; 12(8): 10369-80, 2012.
Article in English | MEDLINE | ID: mdl-23112604

ABSTRACT

In this paper, a liquid multi-parameter decoupling method with only one Lamb wave sensor is presented. In a Lamb wave sensor, antisymmetric modes (A(01) mode for low frequency, A(03) mode for high frequency) and symmetric modes (S(0) mode) are used to detect multiple parameters of a liquid, such as its density, sound velocity, and viscosity. We found they can play very different roles in the detections. For example, the A(01) mode is very sensitive to the liquid's density but the A(03) mode is sensitive to the sound velocity. Here, the A(0) mode is used to identify the density of the detected liquid and with this density value we obtained the viscosity by the amplitude shifts of the S(0) mode. This could be a way to distinguish an unknown liquid with high sensitivity or to solve the problem of selectivity of label-free detection on biosensors.


Subject(s)
Acoustics/instrumentation , Chemistry Techniques, Analytical/instrumentation , Signal Processing, Computer-Assisted , Solutions/chemistry , Biosensing Techniques/instrumentation , Bromides/chemistry , Chemistry Techniques, Analytical/methods , Electronics , Microtechnology/instrumentation , Sodium Chloride/chemistry , Sodium Compounds/chemistry , Solutions/analysis , Sound , Viscosity
5.
Article in English | MEDLINE | ID: mdl-18019253

ABSTRACT

The capability to accurately handle liquids in small volumes is a key point for the development of lab-on-chip devices. In this paper, we investigate an application of surface acoustic waves (SAW) for positioning micro-droplets. A SAW device based on a 2 x 2 matrix of inter-digital transducers (IDTs) has been fabricated on a (YXI)/128 degrees LiNbO3 substrate, which implies displacement and detection in two dimensions of droplets atop a flat surface. Each IDT operates at a given frequency, allowing for an easy addressing of the active channel. Furthermore, very low cross-talk effects were observed as no frequency mixing arose in our device. Continuous as well as pulsed excitations of the IDTs have been studied, yielding, respectively, continuous and step-by-step droplet displacement modes. In addition, we also have used these two excitation types to control the velocity and the position of the droplets. We also have developed a theoretical analysis of the detection mode, which has been validated by experimental assessment.

6.
Ultrasonics ; 40(1-8): 349-53, 2002 May.
Article in English | MEDLINE | ID: mdl-12159963

ABSTRACT

A water droplet placed on a vibrating surface moves toward the antinode of the vibration. The acoustic radiation pressure can explain this non-linear phenomenon. In this paper, the use of a piezoelectric actuator to produce a displacement of liquid droplets is pointed out. Due to geometry of the actuator and the position of piezoelectric ceramics, it is possible to generate stationary modes in the structure where the nodal lines can move.

SELECTION OF CITATIONS
SEARCH DETAIL
...