Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(1): 111967, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640345

ABSTRACT

Hox genes encode transcription factors that specify segmental identities along the anteroposterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, a feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive changes in histone modifications, chromatin architecture, and use of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compare chromatin organization in cell lines and larvae, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary for insulation between 3D domains carrying different histone modifications. Interestingly, we detect a non-canonical inversion of collinear chromatin dynamics at Abd-B, with the domain of active histone modifications progressively decreasing in size. This dynamic chromatin organization differentially activates the alternative promoters of the Abd-B gene, thereby expanding the possibilities for fine-tuning of transcriptional output.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Homeodomain Proteins/metabolism , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid , Genes, Homeobox , Chromatin , Gene Expression Regulation, Developmental
2.
PLoS Genet ; 18(5): e1009782, 2022 05.
Article in English | MEDLINE | ID: mdl-35604932

ABSTRACT

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.


Subject(s)
Oncogene Proteins, Fusion , Paired Box Transcription Factors , Rhabdomyosarcoma, Alveolar , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Fibroblasts , Forkhead Box Protein O1/genetics , Forkhead Transcription Factors/genetics , Humans , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/genetics , PAX7 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Alveolar/genetics
3.
PLoS Genet ; 16(11): e1009164, 2020 11.
Article in English | MEDLINE | ID: mdl-33175861

ABSTRACT

The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.


Subject(s)
Cell Transdifferentiation/genetics , Cell Transformation, Neoplastic/genetics , Oncogene Proteins, Fusion/metabolism , Paired Box Transcription Factors/metabolism , Rhabdomyosarcoma, Alveolar/genetics , Animals , Biopsy , Chick Embryo , Child , Cyclin D1/genetics , Datasets as Topic , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , N-Myc Proto-Oncogene Protein/genetics , Neoplasm Invasiveness/genetics , Neural Stem Cells/pathology , Neural Tube/cytology , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma, Alveolar/pathology , S Phase/genetics
4.
Methods Mol Biol ; 2011: 121-132, 2019.
Article in English | MEDLINE | ID: mdl-31273697

ABSTRACT

Zebrafish are an emerging model in behavioral neuroscience. They display a wide range of measurable behaviors such as locomotion, aggression, anxiety, learning and memory, and social behavior. In addition, the relative ease of genetic manipulation and the increasing availability of disease models mean that zebrafish have gained in popularity as an animal model for various neurological and psychiatric diseases including autism spectrum disorder (ASD). In order to better characterize social behavior and behavioral abnormalities in zebrafish, we have developed the visually mediated social preference (VMSP) test, a novel assay to measure social preference and social novelty in two consecutive 5-min sessions. Using recording and video tracking, the time spent in different areas of the tank, the time spent immobile, swimming speed, and distance moved can be easily measured and analyzed. Untreated experimentally naive AB WT zebrafish typically show a strong preference for spending time near and interacting with a compartment containing unfamiliar conspecifics over the empty compartments during session 1 and a stronger preference for a group of unfamiliar zebrafish over familiar conspecifics from session 1, during session 2 of the test. Research in our lab has shown that the VMSP is suitable to measure the social behavior of individual zebrafish, to uncover social phenotypes of mutant strains, and to better understand animal models of disease that include impaired sociability such as ASD. The current paper provides a step-by-step guide on how to implement and perform this test and highlights important considerations for data acquisition, analysis, and interpretation.


Subject(s)
Behavior, Animal , Social Behavior , Zebrafish , Animals , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/psychology , Data Interpretation, Statistical , Disease Models, Animal , Disease Susceptibility
SELECTION OF CITATIONS
SEARCH DETAIL
...