Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Gen Comp Endocrinol ; 344: 114371, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37640145

ABSTRACT

This study approached the long-term oral administration of cortisol (F) and dexamethasone (DEX), two synthetic glucocorticoids, compared to a control group (CT) in the juveniles of a marine teleost, the gilthead seabream (Sparus aurata). Physiologically, DEX treatment impaired growth, which appears to be linked to carbohydrate allocation in muscle and liver, hepatic triglycerides depletion, and reduced hematocrit. Hypophyseal gh mRNA expression was 2-fold higher in DEX than in CT or F groups. Similarly, hypothalamic trh and hypophyseal pomcb followed this pattern. Plasma cortisol levels were significantly lower in DEX than in CT, while F presented intermediate levels. In the posterior intestine, measured short circuit-current (Isc) was more anion absorptive in CT and F compared to the DEX group, whereas Isc remained unaffected in the anterior intestine. The derived transepithelial electric resistance (TEER) significantly differed between intestinal regions in the DEX group. These results provide new insights to understand better potential targeted biomarkers indicative of the differential glucocorticoid or mineralocorticoid-receptors activation in fish.


Subject(s)
Sea Bream , Animals , Sea Bream/metabolism , Hydrocortisone/metabolism , Intestines , Hypothalamus , Glucocorticoids/metabolism , Dexamethasone/pharmacology , Dexamethasone/metabolism
2.
Sci Rep ; 11(1): 22698, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811419

ABSTRACT

Two orthologues of the gene encoding the Na+-Cl- cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl- cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.


Subject(s)
Ion Transport/genetics , Osmoregulation/genetics , Petromyzon/genetics , Salt Tolerance/genetics , Solute Carrier Family 12, Member 3/genetics , Amino Acid Sequence , Animals , Bumetanide/pharmacology , Fresh Water/chemistry , Gills/metabolism , Indapamide/pharmacology , Intestines/metabolism , Ion Transport/drug effects , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Petromyzon/metabolism , Phylogeny , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Salinity , Salt Tolerance/drug effects , Seawater/chemistry , Sodium Chloride Symporter Inhibitors/pharmacology , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Sodium-Potassium-Chloride Symporters/genetics , Sodium-Potassium-Chloride Symporters/metabolism , Solute Carrier Family 12, Member 3/metabolism , Water/metabolism
3.
Article in English | MEDLINE | ID: mdl-33647459

ABSTRACT

The effects of ocean acidification mediated by an increase in water pCO2 levels on marine organisms are currently under debate. Elevated CO2 concentrations in the seawater induce several physiological responses in teleost fish, including acid-base imbalances and osmoregulatory changes. However, the consequences of CO2 levels enhancement on energy metabolism are mostly unknown. Here we show that 5 weeks of exposure to hypercapnia (950 and 1800 µatm CO2) altered intermediary metabolism of gilthead seabream (Sparus aurata) compared to fish acclimated to current ocean values (440 µatm CO2). We found that seabream compromises its physiological acid-base balance with increasing water CO2 levels and the subsequent acidification. Intestinal regions (anterior, mid, and rectum) engaged in maintaining this balance are thus altered, as seen for Na+/K+-ATPase and the vacuolar-type H+-ATPase activities. Moreover, liver and muscle counteracted these effects by increasing catabolic routes e.g., glycogenolysis, glycolysis, amino acid turnover, and lipid catabolism, and plasma energy metabolites were altered. Our results demonstrate how a relatively short period of 5 weeks of water hypercapnia is likely to disrupt the acid-base balance, osmoregulatory capacity and intermediary metabolism in S. aurata. However, long-term studies are necessary to fully understand the consequences of ocean acidification on growth and other energy-demanding activities, such as reproduction.


Subject(s)
Acids/chemistry , Energy Metabolism , Sea Bream/metabolism , Amino Acids/blood , Animals , Carbon Dioxide/metabolism , Homeostasis , Hydrogen-Ion Concentration , Liver/metabolism , Muscles/metabolism , Oceans and Seas
4.
Article in English | MEDLINE | ID: mdl-32304738

ABSTRACT

Stress responses in teleosts include the release of hormones into the bloodstream. Their effects depend on the species and on the environmental conditions. The Amazon basin collects waters of diverse chemical composition, and some fish are able to inhabit several of them. However, the effects of these waters on the stress axis are still unknown. Here we show how acute air-exposure differently affects stress biomarkers in tambaqui (Colossoma macropomum), a tropical model species, when acclimated to two Amazonian waters (Rio Negro -RN- water rich in humic acids and poor in ions, and groundwater -IG- with no humic acids and higher concentration of ions). This study described primary and secondary stress responses after air exposure including plasma cortisol, energy metabolites, pH and ions, skin mucus energy metabolites, as well as gills and kidney Na+/K+-ATPase and Na+/H+-exchanger (NHE) activities. Several differences were described in these stress biomarkers due to the acclimation water. The most remarkable ones include increased mucus glucose only in RN-fish, and mucus lactate only in IG-fish after air exposure. Moreover, an inverse relationship between plasma cortisol and Na+ concentrations as well as a direct relationship between plasma ammonia and branchial NHE activity were observed only in RN-fish. Our results demonstrate how important is to study stress responses in fish acclimated to different environments, as physiological differences can be magnified during episodes of high energy expenditure. In addition to having a direct application in aquaculture, this study will improve the management of critical ecosystems such as the Amazon.


Subject(s)
Acclimatization , Characiformes/physiology , Stress, Physiological , Ammonia/metabolism , Animals , Brazil , Homeostasis , Sodium-Hydrogen Exchangers/metabolism , Water/chemistry
5.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R410-R417, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31747320

ABSTRACT

Lampreys are the most basal vertebrates with an osmoregulatory strategy. Previous research has established that the salinity tolerance of sea lamprey increases dramatically during metamorphosis, but underlying changes in the gut have not been examined. In the present work, we examined changes in intestinal function during metamorphosis and seawater exposure of sea lamprey (Petromyzon marinus). Fully metamorphosed juvenile sea lamprey had 100% survival after direct exposure to 35 parts per thousand seawater (SW) and only slight elevations in plasma chloride (Cl-) levels. Drinking rates of sea lamprey juveniles in seawater were 26-fold higher than juveniles in freshwater (FW). Na+-K+-ATPase (NKA) activity in the anterior and posterior intestine increased 12- and 3-fold, respectively, during metamorphosis, whereas esophageal NKA activity was lower than in the intestine and did not change with development. Acclimation to SW significantly enhanced NKA activity in the posterior intestine but did not significantly change NKA activity in the anterior intestine, which remained higher than that in the posterior intestine. Intestinal Cl- and water uptake, which were observed in ex vivo preparations of anterior and posterior intestine under both symmetric and asymmetric conditions, were higher in juveniles than in larvae and were similar in magnitude of those of teleost fish. Inhibition of NKA by ouabain in ex vivo preparations inhibited intestinal water absorption by 64%. Our results indicate drinking and intestinal ion and water absorption are important to osmoregulation in SW and that preparatory increases in intestinal NKA activity are important to the development of salinity tolerance that occurs during sea lamprey metamorphosis.


Subject(s)
Drinking , Intestinal Absorption , Intestines/physiology , Osmoregulation , Petromyzon/physiology , Salt Tolerance , Seawater , Animals , Chlorides/metabolism , Fish Proteins/metabolism , Intestines/enzymology , Metamorphosis, Biological , Petromyzon/metabolism , Potassium/metabolism , Salinity , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
6.
Front Physiol ; 10: 717, 2019.
Article in English | MEDLINE | ID: mdl-31275156

ABSTRACT

Vaccination is a widely used therapeutical strategy in aquaculture, but whether vaccination elicits stress responses in the central neuroendocrine system and enhances the crosstalk between the immune and endocrine systems in the brain or pituitary after vaccination is unclear. To answer this question two experiments using two different vaccine exposure routes, i.e., bath or intraperitoneal (i.p.) injection, were carried out on gilthead seabream (Sparus aurata L.). In the first one, the stress responses of fish subjected to waterborne Vibrio anguillarum bacterin were compared with responses after air exposure or their combination. In the second experiment, fish were subjected to an intraperitoneal injection of Lactococcus garvieae bacterin and we assessed the central stress response and also whether or not a significant immune response was induced in brain and pituitary. In both experiments, blood, brain and pituitary tissues were collected at 1, 6, and 24 h post stress for plasma hormone determination and gene expression analysis, respectively. Results indicated that bath vaccination induced a decreased central stress response compared to air exposure which stimulated both brain and pituitary stress genes. In the second experiment, injection vaccination kept unchanged plasma stress hormones except cortisol that raised at 6 and 24 h. In agreement, non-significant or slight changes on the transcription of stress-related genes were recorded, including the hormone genes of the hypothalamic pituitary interrenal (HPI) axis and other stress markers such as hsp70, hsp90, and mt genes in either brain or pituitary. Significant changes were observed, however, in crhbp and gr. In this second experiment the immune genes il1ß, cox2, and lys, showed a strong expression in both brain and pituitary after vaccination, notably il1ß which showed more than 10 fold raise. Overall, vaccination procedures, although showing a cortisol response, did not induce other major stress response in brain or pituitary, regardless the administration route. Other than main changes, the alteration of crhbp and gr suggests that these genes could play a relevant role in the feedback regulation of HPI axis after vaccination. In addition, from the results obtained in this work, it is also demonstrated that the immune system maintains a high activity in both brain and pituitary after vaccine injection.

7.
Article in English | MEDLINE | ID: mdl-30905654

ABSTRACT

In 2019, Europe will adopt a no-discards policy in fisheries. This entails the landing of captured species unless strong evidence is provided supporting their survival and recovery after fishing. Thus, research on this topic is gaining momentum. Bottom-trawling, as a non-selective fishing method, is characterized by a high proportion of discards including vulnerable key species, such as demersal sharks. Their survival may also depend on capture depth. By paralleling onboard and laboratory experiments with the small-spotted catshark, Scyliorhinus canicula, we offer a robust experimental design to assess the survival of discarded sharks. Catsharks were captured by bottom-trawling at two depths (shallow ~89 m and deep ~479 m). Blood samples were collected following trawl capture and analyzed for stress biomarkers (lactate, osmolality, phosphate, urea). During recovery in onboard tanks, behavior was video-recorded and fish were re-sampled after 24 h. A second experiment was conducted in laboratory facilities to simulate air-exposure after trawling and to analyze the physiological recovery. Our results showed that 95.7% of the animals survived 24 h after trawling. We confirmed that trawling elicited acute stress responses in catshark but that they managed to recover. This was demonstrated by lactate concentrations that were 2.6 mM upon capture, but recovered to assumed baselines after 24 h (0.2 mM). Non-invasive video monitoring revealed behavioral differences with depth, whereby those captured at 89 m depth required longer to recover than those captured at 479 m depth. Implementation of standardized survival studies by fishery managers can benefit from holistic physiological approaches, such as the one proposed here.


Subject(s)
Fisheries , Sharks/physiology , Animals , Humans , Survival Rate
8.
Article in English | MEDLINE | ID: mdl-30690148

ABSTRACT

In aquaculture facilities fish welfare could be compromised due to stressors. Fish deal with stress, inter alia, through the activation of the hypothalamic-pituitary-interrenal endocrine axis and, as a result, corticosteroids are released into the blood. Recent studies have described that corticosteroids actions depend on the specific affinities to their receptors, and the subsequent differentiated responses. Cortisol is the main corticosteroid hormone in teleost fish, being its actions dependent on the intensity and time of exposure to stressors. Short-term effects of corticosteroids are well described, but long-term effects, including changes in the energy management directly affecting growth and survival, are less understood in fish. Here we show the effects of chronic oral administration of cortisol and the synthetic glucocorticoid dexamethasone (DXM) on the intermediary metabolism of the gilthead seabream (Sparus aurata). We described a higher energy expenditure associated to both corticosteroids resulting in lower growth rates of fish. Moreover, the effects of these compounds were tissue-dependant, with differences between both hormones. Thus, cortisol-fed animals accumulated triglycerides in the liver, while DXM treatment led to glycogen storage. Cortisol and DXM stimulated amino acids catabolism and gluconeogenic pathways in muscle and gills, but the effects were significantly enhanced in DXM-fed fish. The described effects highlighted differentiated mechanisms of action associated to both corticosteroids under chronic stress conditions. Further studies should aim at describing those pathways in detail, with special attention to the functionality of glucocorticoid receptor isoforms. The effects described here for S. aurata juveniles, may serve as a basis to assess long-term stress in future comparative studies with other aquaculture species.


Subject(s)
Dexamethasone/administration & dosage , Hydrocortisone/administration & dosage , Sea Bream/metabolism , Animals , Aquaculture , Dexamethasone/blood , Energy Metabolism , Humans , Hydrocortisone/blood , Liver/metabolism , Osmoregulation , Sea Bream/growth & development
9.
Fish Physiol Biochem ; 44(2): 615-628, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29275437

ABSTRACT

In euryhaline teleosts, the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-interrenal axes (HPT and HPI, respectively) are regulated in response to environmental stimuli such as salinity changes. However, the molecular players participating in this physiological process in the gilthead seabream (Sparus aurata), a species of high value for aquaculture, are still not identified and/or fully characterized in terms of gene expression regulation. In this sense, this study identifies and isolates the thyrotropin-releasing hormone (trh) mRNA sequence from S. aurata, encoding prepro-Trh, the putative factor initiating the HPT cascade. In addition, the regulation of trh expression and of key brain genes in the HPI axis, i.e., corticotrophin-releasing hormone (crh) and corticotrophin-releasing hormone-binding protein (crhbp), was studied when the osmoregulatory status of S. aurata was challenged by exposure to different salinities. The deduced amino acid structure of trh showed 65-81% identity with its teleostean orthologs. Analysis of the tissue distribution of gene expression showed that trh mRNA is, though ubiquitously expressed, mainly found in brain. Subsequently, regulation of gene expression of trh, crh, and crhbp was characterized in fish acclimated to 5-, 15-, 40-, and 55-ppt salinities. In this regard, the brain gene expression pattern of trh mRNA was similar to that found for the crh gene, showing an upregulation of gene expression in seabream acclimated to the highest salinity tested. Conversely, crhbp did not change in any of the groups tested. Our results suggest that Trh and Crh play an important role in the acclimation of S. aurata to hypersaline environments.


Subject(s)
Brain/metabolism , Corticotropin-Releasing Hormone/genetics , Gene Expression Regulation , Sea Bream/physiology , Thyrotropin-Releasing Hormone/genetics , Amino Acid Sequence , Animals , Phylogeny , Salinity , Sea Bream/genetics , Sequence Homology , Stress, Physiological
10.
Fish Physiol Biochem ; 44(1): 349-373, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29147970

ABSTRACT

The effects of different environmental salinities (0, 12, 40, and 55 ppt) on pepsinogen 2 (pga2), trypsinogen 2 (try2), chymotrypsinogen (ctr), and pancreatic alpha-amylase (amy2a) gene expression, and on the total activities of their corresponding enzymes, were assessed in Chelon labrosus juveniles, after their corresponding full-complementary DNA sequences were cloned. Furthermore, the quantitative effect of different salinities on the hydrolysis of feed protein by fish digestive enzymes was evaluated using an in vitro system. Relative pga2 expression levels were significantly higher in animals maintained at 12 ppt, while a significantly higher gene expression level for ctr and try2 was observed at 40 ppt. amy2a gene expression showed its maximum level at 40 ppt and the lowest at 55 ppt. A significant reduction in the activity of amylase with the increase in salinity was observed, whereas the maximum activity for alkaline proteases was observed in individuals maintained at 40 ppt. A negative effect of high salinity on the action of proteases was confirmed by the in vitro assay, indicating a decreased efficiency in the digestive function in C. labrosus when maintained at high environmental salinities. Nevertheless, individuals can live under different environmental salinities, even though gene expression is different and the enzymatic activities are not maintained at the highest studied salinity. Therefore, compensatory mechanisms should be in place. Results are discussed on the light of the importance as a new species for aquaculture.


Subject(s)
Digestion/physiology , Gene Expression Regulation, Enzymologic/drug effects , Salinity , Smegmamorpha/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chymotrypsinogen/genetics , Chymotrypsinogen/metabolism , DNA, Complementary/genetics , Intestinal Mucosa/metabolism , Pancreatic alpha-Amylases/genetics , Pancreatic alpha-Amylases/metabolism , Pepsinogen A/genetics , Pepsinogen A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium Chloride/pharmacology , Trypsinogen/metabolism
11.
Article in English | MEDLINE | ID: mdl-27557988

ABSTRACT

Thyroid hormones are involved in many developmental and physiological processes, including osmoregulation. The regulation of the thyroid system by environmental salinity in the euryhaline gilthead seabream (Sparus aurata) is still poorly characterized. To this end seabreams were exposed to four different environmental salinities (5, 15, 40 and 55ppt) for 14days, and plasma free thyroid hormones (fT3, fT4), outer ring deiodination and Na+/K+-ATPase activities in gills and kidney, as well as other osmoregulatory and metabolic parameters were measured. Low salinity conditions (5ppt) elicited a significant increase in fT3 (29%) and fT4 (184%) plasma concentrations compared to control animals (acclimated to 40ppt, natural salinity conditions in the Bay of Cádiz, Spain), while the amount of pituitary thyroid stimulating hormone subunit ß (tshb) transcript abundance remained unchanged. In addition, plasma fT4 levels were positively correlated to renal and branchial deiodinase type 2 (dio2) mRNA expression. Gill and kidney T4-outer ring deiodination activities correlated positively with dio2 mRNA expression and the highest values were observed in fish acclimated to low salinities (5 and 15ppt). The high salinity (55ppt) exposure caused a significant increase in tshb expression (65%), but deiodinase gene expression (dio1 and dio2) and activity did not change and were similar to controls (40ppt). In conclusion, acclimation to different salinities led to changes in the peripheral regulation of thyroid hormone metabolism in seabream. Therefore, thyroid hormones are involved in the regulation of ion transport and osmoregulatory physiology in this species. The conclusions derived from this study may also allow aquaculturists to modulate thyroid metabolism in seabream by adjusting culture salinity.


Subject(s)
Salinity , Sea Bream/physiology , Thyroid Gland/physiology , Algorithms , Animals , Real-Time Polymerase Chain Reaction , Thyroxine/blood
12.
Article in English | MEDLINE | ID: mdl-27865855

ABSTRACT

Fish are continuously forced to actively absorb or expel water and ions through epithelia. Most studies have focused on the gill due to its role in Na+ and Cl- trafficking. However, comparatively few studies have focused on the changing function of the intestine in response to external salinity. Therefore, the present study investigated the main intestinal changes of long-term acclimation of the Senegalese sole (Solea senegalensis) to 5, 15, 38 and 55ppt. Through the measurement of short-circuit current (Isc) in Ussing chambers and biochemical approaches, we described a clear anterior/posterior functional regionalization of the intestine in response to salinity. The use of specific inhibitors in Ussing chamber experiments, revealed that the bumetanide-sensitive Na+/K+/Cl- co-transporters are the main effectors of Cl- uptake in both anterior intestine and rectum. Additionally, the use of the anion exchanger specific inhibitor, DIDS, showed a salinity/region dependency of anion exchanger function. Moreover, we also described ouabain-sensitive Na+/K+-ATPase (NKA) and Bafilomycin A1-sensitive H+-ATPase activities (HA), which displayed changes related to salinity and intestinal region. However, the most striking result of the present study is the description of an omeprazole-sensitive H+/K+-ATPase (HKA) in the rectum of Senegalese sole. Its activity was consistently measurable and increased at lower salinities, reaching rates even higher than those of the NKA. Together our results provide new insights into the changing role of the intestine in response to external salinity in teleost fish. The rectal activity of HKA offers an alternative/cooperative mechanism with the HA in the final processing of intestinal water absorption by apical titration of secreted bicarbonate.


Subject(s)
Flatfishes/physiology , Intestines/physiology , Salinity , Adenosine Triphosphatases/metabolism , Animals , Gills/physiology , Intestines/enzymology
13.
Vet Immunol Immunopathol ; 179: 8-17, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27590420

ABSTRACT

The marine fish pathogen Photobacterium damselae subsp. piscicida (Phdp) is responsible for important disease outbreaks affecting cultured fish species including the flatfish Solea senegalensis. In the present work, transcription of iron metabolism related genes (TF, FERR-M, HP-1 and HAMP-1) as well as innate immune system components such as complement proteins (C3 and C7), lysozyme (LYS-G), TNF family (TNFα, TRAF-3), NCCRP-1 and heat shock protein encoding genes (HSP70, HSP90AA, HSP90AB and GP96) has been determined in the liver and kidney of S. senegalensis specimens after Phdp infection. Intraperitoneal injection (IP) and immersion (IM) routes have been used for infection. Fish developed specific antibodies in both cases, higher levels being detected in IP infected specimens. Both infection routes resulted in increased relative transcript levels of FERR-M, HP-1 and HAMP-1 genes and TF decreased relative transcription, conducting to lower iron availability for the pathogen. This response can be considered as a strategy to limit iron availability for Phdp, a pathogen capable to obtain iron from transferrin. Relative transcription of genes encoding lysozyme and complement factors C3 and C7 were also increased regardless the infection route; the liver was the main organ involved in the initial stages and the kidney in later stages of the infection. TNFα and TRAF-3 relative gene transcription increased 24h post-infection. TRAF-3 gene induction was detected 30 d post-infection, whilst no changes in TNFα were observed 72h or 30 d post-infection. NCCRP-1 changes were observed after IP infection in the liver and kidney; however, IM infection resulted only in slight changes in the kidney of infected fish. This different response observed maybe related to a lower number of invaded cells by the pathogen. Finally, changes in HSP90AB and GP96 have been detected after infection by both routes. Different late modulation has been observed in assayed genes depending on the route of infection. Thus, only LYS-G, TF, NCCRP-1, GP96 and HSP90AB gene transcription was modulated 30 d post-infection in the kidney of IM infected specimens; however, IP infected fish showed modulation in a higher number of genes both in liver and kidney tissues. The implications of these responses in resistance to infection by Phdp need to be elucidated.


Subject(s)
Fish Diseases/immunology , Flatfishes/immunology , Gram-Negative Bacterial Infections/veterinary , Photobacterium/pathogenicity , Transcription, Genetic , Animals , Complement C3/genetics , Complement C7/genetics , Flatfishes/microbiology , HSP90 Heat-Shock Proteins/genetics , Tumor Necrosis Factor-alpha/genetics
14.
Chronobiol Int ; 33(3): 257-67, 2016.
Article in English | MEDLINE | ID: mdl-26930129

ABSTRACT

Growth factors in vertebrates display daily rhythms, which, while widely described in mammals, are still poorly understood in teleost fish. Here, we investigated the existence of daily rhythms in the somatotropic axis of the flatfish Solea senegalensis. In a first experiment, daily rhythms of the expression of pituitary adenylate cyclase-activating polypeptide (pacap), growth hormone (gh), insulin-like growth factor 1 (igf1) and its receptor (igf1r) were analyzed under a 12:12 h light:dark cycle. All genes displayed daily rhythms with the acrophases of pacap, gh and igf1 located in the second half of the dark phase (ZT 20:28-0:04 h), whereas the acrophase of igf1r was located around mid-light (ZT 5:33 h). In a second experiment, the influence of the time of day (mid-light, ML, versus mid-darkness, MD) of GH administration on the expression of these factors and on plasma glucose levels was tested. The response observed depended on the time of injection: the strongest effects were observed at MD, when GH administration significantly reduced pituitary gh and enhanced liver igf1 expression. These results provide the first evidence of daily rhythms and differential day/night effects in growth factors in S. senegalensis, suggesting new insights for investigating the physiology of growth and possible applications to improve fish aquaculture.


Subject(s)
Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Fish Proteins/metabolism , Flatfishes/metabolism , Growth Hormone/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Liver/drug effects , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Fish Proteins/genetics , Flatfishes/genetics , Growth Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Photoperiod , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptor, IGF Type 1/metabolism , Time Factors
15.
Fish Physiol Biochem ; 42(1): 365-77, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26486515

ABSTRACT

The role of insulin-like growth factor 1 (IGF-1) on regulation of growth hormone (GH) and prolactin (PRL) as well as the possible involvement of IGF-1 receptor subtype a (IGF-1Ra) mRNA was assessed in juvenile specimens of Sparus aurata. IGF-1Ra was successfully cloned, and active receptor domains were localized in its mRNA precursor. Also, phylogenetic analysis of the protein sequence indicated a closer proximity to IGF-1Ra isoform found in zebrafish and other teleosts, than to the isoform IGF-1Rb. The most abundant presence of IGF-1Ra mRNA was detected in white muscle, whereas head kidney showed the lowest gene expression among 24 different studied tissues. Pituitaries of juvenile specimens of S. aurata were incubated in vitro with different doses of IGF-1 (0, 1, 100, and 1000 ng mL(-1)) during a period of 10 h. Total RNA with a high quality could be obtained from these pituitaries. PRL mRNA expression significantly increased with increasing IGF-1 doses. Similarly, IGF-1Ra mRNA increased its expression in response to IGF-1. However, GH mRNA levels decreased in a dose-dependent manner after IGF-1 treatment. The contradictory responses of GH and PRL expressions to IGF-1 in our experiment are possibly mediated by IGF-1Ra presence on the somatotrophs and prolactotrophs. The increase in IGF-1Ra mRNA levels may be related to the proper activation of the PI3-K/Akt signal transduction pathways which are normally involved in GH and PRL regulation.


Subject(s)
Growth Hormone/genetics , Insulin-Like Growth Factor I/pharmacology , Pituitary Gland/metabolism , Prolactin/genetics , Receptor, IGF Type 1/genetics , Sea Bream/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Molecular Sequence Data , Muscles/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology
16.
Fish Shellfish Immunol ; 47(1): 377-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386193

ABSTRACT

Senegalese sole cultures are frequently affected by Vibrio harveyi disease outbreaks. Vaccines in aquaculture are one of the most successful methods of preventing fish pathologies; however, these vaccines are usually composed of inactivated whole cells containing a wide pool of antigens, and some do not induce any protection against pathogens. Thus, the aim of this study was to identify immunogenic proteins of V. harveyi involved in the specific antibody production by Senegalese sole. S. senegalensis specimens were immunized, by intraperitoneal injection, with V. harveyi bacterin supplemented with inactivated extracellular polymeric substances (ECP) and Freund incomplete adjuvant to obtain polyclonal antiserum. One month later, specimens were re-inoculated with the same antigens. Sera from immunized fish were collected two months post first immunization. Strong specific immune response to V. harveyi antigens was detected by ELISA using bacterin (limit dilutions of sera were 1:64000), ECP (1:4000) and outer membrane proteins (OMP) (1:4000) as antigens. Presence of immunogenic proteins in V. harveyi ECP and OMP were determined by 2D-PAGE. For Western Blot analysis some gels were transferred onto nitrocellulose membranes and incubated with sera from S. senegalensis specimens immunized against V. harveyi. 2D-PAGE and Western Blot showed at least five reactive proteins in the ECP and two in the OMP fraction. The spots that clearly reacted with the sole antiserum were excised from stained gel, and analyzed by mass spectrometry (MALDI/TOFTOF). A database search was then performed, using MASCOT as the search method. According to the results, the five ECP spots were identified as Maltoporine, protein homologous to Metal dependent phosphohydrolase, two porins isoforms of V. harveyi and a protein homologous to the cell division protein FtsH. Reactive proteins in the OMP fraction were identified as the protein 3-hydroxyisobutyrate dehydrogenase and a protein homologous to acid phosphatase.


Subject(s)
Bacterial Proteins/genetics , Fish Diseases/immunology , Flatfishes , Immunity, Innate , Vibrio Infections/veterinary , Vibrio/physiology , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/metabolism , Bacterial Vaccines/pharmacology , Fish Diseases/microbiology , Vibrio/genetics , Vibrio Infections/immunology , Vibrio Infections/microbiology
17.
Fish Physiol Biochem ; 41(6): 1369-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26148800

ABSTRACT

In this study we assessed the influence of three different environmental salinities (5, 15 and 31 psu during 90 days) on growth, osmoregulation, energy metabolism and digestive capacity in juveniles of the Notothenioid fish Eleginops maclovinus. At the end of experimental time samples of plasma, liver, gill, intestine, kidney, skeletal muscle, stomach and pyloric caeca were obtained. Growth, weight gain, hepatosomatic index and specific growth rate increased at 15 and 31 psu and were lower at 5 psu salinity. Gill Na(+), K(+)-ATPase (NKA) activity presented a "U-shaped" relationship respect to salinity, with its minimum rates at 15 psu, while this activity correlated negatively with salinity at both anterior and posterior intestinal portions. No significant changes in NKA activity were observed in kidney or mid intestine. Large changes in plasma, metabolite levels and enzymatic activities related to energy metabolism in liver, gill, intestine, kidney and muscle were generally found in the groups exposed to 5 and 31 psu compared to the 15 psu group. Only the pepsin activity (digestive enzymes) assessed enhanced with environmental salinity, while pyloric caeca trypsin/chymotrypsin ratio decreased. This study suggests that juvenile of E. maclovinus presents greater growth near its iso-osmotic point (15 psu) and hyperosmotic environment (31 psu). Acclimation to low salinity increased the osmoregulatory expenditure as seen by the gill and anterior intestine results, while at high salinity, branchial osmoregulatory activity was also enhanced. This requires the mobilization of lipid stores and amino acids, thereby holding the growth of fish back. The subsequent reallocation of energy sources was not sufficient to maintain the growth rate of fish exposed to 5 psu. Thus, E. maclovinus juveniles present better growth efficiencies in salinities above the iso-osmotic point and hyperosmotic environment of this species, showing their best performance at 15 psu as seen by the main osmoregulatory and energy metabolism enzymatic activities.


Subject(s)
Digestion/physiology , Energy Metabolism , Osmoregulation , Perciformes/physiology , Salinity , Acclimatization/physiology , Animals , Gills/enzymology , Gills/physiology , Intestines/enzymology , Intestines/physiology , Kidney/enzymology , Kidney/physiology , Pepsin A/metabolism , Perciformes/growth & development , Sodium-Potassium-Exchanging ATPase/metabolism
18.
Article in English | MEDLINE | ID: mdl-25446605

ABSTRACT

The effects of starvation and re-feeding on metabolites and tissue composition, GH/IGF-I axis, and digestive enzyme activities in juvenile thick-lipped grey mullet (Chelon labrosus) were evaluated. Fish were divided into three feeding groups (n=72, 82.00±4.09 g initial body mass). The control group was fed 1% of their body mass once a day throughout the experiment with commercial pellets. The other two groups were deprived of feed for 21 days (starved), or re-fed for 7 days after 14 days of food deprivation (re-fed). Full-length cDNAs from pituitary GH and hepatic IGF-I were cloned by screening a cDNA library or by PCR techniques. Furthermore, changes in their mRNA expressions were assessed by real time PCR in specimens maintained under the different feeding patterns. Results showed a negative growth in starved and re-feeding groups. Starvation induced a significant increase in plasma triglycerides as well as a decrease in liver glucose and glycogen. Re-feeding increased plasma glucose, lactate and protein, as well as liver glucose and glycogen. In addition, starvation significantly increased pituitary GH expression, while re-feeding down-regulated it. No significant changes were observed in hepatic IGF-I expression in any dietary treatment. Digestive enzyme activities were not significantly affected either by starvation or by re-feeding. The results of the present work suggest that juveniles of the thick-lipped grey mullet may easily adjust their metabolism under situations characterized by a short-term starvation and re-feeding.


Subject(s)
Smegmamorpha/metabolism , Amino Acid Sequence , Animals , Base Sequence , Digestive System/enzymology , Energy Metabolism , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Molecular Sequence Data , Organ Specificity , RNA, Messenger/metabolism , Starvation
19.
J Comp Physiol B ; 185(1): 87-101, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25395251

ABSTRACT

To assess the role of the GH/IGF-I axis in osmotic acclimation of the gilthead seabream Sparus aurata, juvenile specimens were acclimated to four environmental salinities: hyposmotic (5 ‰), isosmotic (12 ‰) and hyperosmotic (40 and 55 ‰). The full-length cDNAs for both pituitary adenylate cyclase-activating peptide (PACAP) and prepro-somatostatin-I (PSS-I), the precursor for mature somatostatin-I (SS-I), were cloned. Hypothalamic PACAP and PSS-I, hypophyseal growth hormone (GH) and prolactin (PRL), and hepatic insulin-like growth factor-I (IGF-I) mRNA expression levels were analyzed in the four rearing salinities tested. PACAP and IGF-I mRNA values increased significantly in response to both 5 and 55 ‰ salinities, showing a U-shaped curve relationship with the basal level in the 40 ‰ group. Hypothalamic PSS-I expression increased strongly in the 55 ‰ environment. GH mRNA levels did not change in any of the tested environmental salinities. PRL mRNA maximum levels were encountered in the 5 and 12 ‰ environments, but significantly down-regulated in the 40 ‰. Plasma cortisol levels significantly increased in the 40 ‰ environment. These results are discussed in relation to the well-known high adaptability of Sparus aurata to different environmental salinities and the role of the GH/IGF-I axis in this process.


Subject(s)
Acclimatization/physiology , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , RNA, Messenger/metabolism , Salinity , Sea Bream/physiology , Analysis of Variance , Animals , Cloning, Molecular , DNA Primers/genetics , Hydrocortisone/blood , Hypothalamus/metabolism , Liver/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Prolactin/metabolism , Reverse Transcriptase Polymerase Chain Reaction
20.
Fish Shellfish Immunol ; 40(2): 424-34, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25108087

ABSTRACT

The aim of this study was to evaluate immunological, metabolic and osmoregulatory secondary stress responses in Eleginops maclovinus specimens submitted to three different stocking densities: i) low (3.1 kg m(-3)), medium (15 kg m(-3)) and high (60 kg m(-3)) during 10 days, alone or in combination with a previous treatment of a protein extract of the pathogen Piscirickettsia salmonis (0.5 µg g weight body(-1)). Plasma, liver, gill and kidney samples were obtained at the end of both experiments. Plasma cortisol and amino acid levels increased, while plasma glucose, triglyceride and lactate levels decreased at higher stocking densities. However, no effects were observed on serum Immunoglobulin type M (IgM anti P. salmonis level) values. Gill Na(+), K(+)-ATPase activity enhanced under these experimental conditions, suggesting an osmotic imbalance. Energy metabolism changes, assessed by metabolite concentrations and enzyme activities, indicated a reallocation of energetic substrates at higher stocking densities. Specimens inoculated with a protein extract of P. salmonis and maintained at different stocking densities showed primary stress response, as all groups enhanced plasma cortisol concentrations. Serum IgM levels increased after treatment with P. salmonis extract but a negative influence of high stocking density on IgM production was observed when immune system was activated. Furthermore, treatment with P. salmonis protein extract evoked deep changes in the metabolite stores in all tissues tested, indicating a mobilization of energy substrates in response to infection. The results show that stocking density induced immunological, metabolic and osmoregulatory secondary stress responses in E. maclovinus specimens and that previous treatment with P. salmonis compromise these changes.


Subject(s)
Adaptive Immunity , Fisheries , Osmotic Pressure , Perciformes/physiology , Piscirickettsia/chemistry , Animals , Perciformes/immunology , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...