Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(6)2023 11 17.
Article in English | MEDLINE | ID: mdl-37812933

ABSTRACT

Objective. Muscle network modeling maps synergistic control during complex motor tasks. Intermuscular coherence (IMC) is key to isolate synchronization underlying coupling in such neuromuscular control. Model inputs, however, rely on electromyography, which can limit the depth of muscle and spatial information acquisition across muscle fibers.Approach. We introduce three-dimensional (3D) muscle networks based on vibrational mechanomyography (vMMG) and IMC analysis to evaluate the functional co-modulation of muscles across frequency bands in concert with the longitudinal, lateral, and transverse directions of muscle fibers. vMMG is collected from twenty subjects using a bespoke armband of accelerometers while participants perform four hand gestures. IMC from four superficial muscles (flexor carpi radialis, brachioradialis, extensor digitorum communis, and flexor carpi ulnaris) is decomposed using matrix factorization into three frequency bands. We further evaluate the practical utility of the proposed technique by analyzing the network responses to various sensor-skin contact force levels, studying changes in quality, and discriminative power of vMMG.Main results. Results show distinct topological differences, with coherent coupling as high as 57% between specific muscle pairs, depending on the frequency band, gesture, and direction. No statistical decrease in signal strength was observed with higher contact force.Significance. Results support the usability vMMG as a tool for muscle connectivity analyses and demonstrate the use of IMC as a new feature space for hand gesture classification. Comparison of spectrotemporal and muscle network properties between levels of force support the robustness of vMMG-based network models to variations in tissue compression. We argue 3D models of vMMG-based muscle networks provide a new foundation for studying synergistic muscle activation, particularly in out-of-clinic scenarios where electrical recording is impractical.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Electromyography , Forearm , Elbow
2.
Sensors (Basel) ; 20(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33120959

ABSTRACT

Neurorobotic augmentation (e.g., robotic assist) is now in regular use to support individuals suffering from impaired motor functions. A major unresolved challenge, however, is the excessive cognitive load necessary for the human-machine interface (HMI). Grasp control remains one of the most challenging HMI tasks, demanding simultaneous, agile, and precise control of multiple degrees-of-freedom (DoFs) while following a specific timing pattern in the joint and human-robot task spaces. Most commercially available systems use either an indirect mode-switching configuration or a limited sequential control strategy, limiting activation to one DoF at a time. To address this challenge, we introduce a shared autonomy framework centred around a low-cost multi-modal sensor suite fusing: (a) mechanomyography (MMG) to estimate the intended muscle activation, (b) camera-based visual information for integrated autonomous object recognition, and (c) inertial measurement to enhance intention prediction based on the grasping trajectory. The complete system predicts user intent for grasp based on measured dynamical features during natural motions. A total of 84 motion features were extracted from the sensor suite, and tests were conducted on 10 able-bodied and 1 amputee participants for grasping common household objects with a robotic hand. Real-time grasp classification accuracy using visual and motion features obtained 100%, 82.5%, and 88.9% across all participants for detecting and executing grasping actions for a bottle, lid, and box, respectively. The proposed multimodal sensor suite is a novel approach for predicting different grasp strategies and automating task performance using a commercial upper-limb prosthetic device. The system also shows potential to improve the usability of modern neurorobotic systems due to the intuitive control design.


Subject(s)
Prostheses and Implants , Robotics , Upper Extremity , Electromyography , Hand , Humans , Intention
3.
PLoS One ; 15(9): e0239363, 2020.
Article in English | MEDLINE | ID: mdl-32970710

ABSTRACT

BACKGROUND: Healthcare workers around the world are experiencing skin injury due to the extended use of personal protective equipment (PPE) during the COVID-19 pandemic. These injuries are the result of high shear stresses acting on the skin, caused by friction with the PPE. This study aims to provide a practical lubricating solution for frontline medical staff working a 4+ hours shift wearing PPE. METHODS: A literature review into skin friction and skin lubrication was conducted to identify products and substances that can reduce friction. We evaluated the lubricating performance of commercially available products in vivo using a custom-built tribometer. FINDINGS: Most lubricants provide a strong initial friction reduction, but only few products provide lubrication that lasts for four hours. The response of skin to friction is a complex interplay between the lubricating properties and durability of the film deposited on the surface and the response of skin to the lubricating substance, which include epidermal absorption, occlusion, and water retention. INTERPRETATION: Talcum powder, a petrolatum-lanolin mixture, and a coconut oil-cocoa butter-beeswax mixture showed excellent long-lasting low friction. Moisturising the skin results in excessive friction, and the use of products that are aimed at 'moisturising without leaving a non-greasy feel' should be prevented. Most investigated dressings also demonstrate excellent performance.


Subject(s)
Coronavirus Infections/complications , Lubricants/therapeutic use , Personal Protective Equipment/adverse effects , Pneumonia, Viral/complications , Skin/injuries , Adult , Betacoronavirus , Biomechanical Phenomena , COVID-19 , Friction , Humans , Male , Medical Staff , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...