Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20434, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650167

ABSTRACT

Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Extracellular Matrix/metabolism , Cell Line, Tumor , Cell Shape , Humans
3.
Mol Biol Cell ; 32(14): 1293-1305, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33979209

ABSTRACT

Release of neurotransmitter from sensory hair cells is regulated by otoferlin. Despite the importance of otoferlin in the auditory and vestibular pathways, the functional contributions of the domains of the protein have not been fully characterized. Using a zebrafish model, we investigated a mutant otoferlin with a stop codon at the start of the transmembrane domain. We found that both the phenotype severity and the expression level of mutant otoferlin changed with the age of the zebrafish. At the early developmental time point of 72 h post fertilization, low expression of the otoferlin mutant coincided with synaptic ribbon deficiencies, reduced endocytosis, and abnormal transcription of several hair cell genes. As development proceeded, expression of the mutant otoferlin increased, and both synaptic ribbons and hair cell transcript levels resembled wild type. However, hair cell endocytosis deficits and abnormalities in the expression of GABA receptors persisted even after up-regulation of mutant otoferlin. Analysis of membrane-reconstituted otoferlin measurements suggests a function for the transmembrane domain in liposome docking. We conclude that deletion of the transmembrane domain reduces membrane docking, attenuates endocytosis, and results in developmental delay of the hair cell.


Subject(s)
Hair Cells, Auditory/metabolism , Membrane Proteins/metabolism , Age Factors , Animals , Endocytosis/genetics , Exocytosis/physiology , Gene Expression/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/physiology , Protein Domains/genetics , Synapses/metabolism , Zebrafish/metabolism
4.
Sci Rep ; 9(1): 14273, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582816

ABSTRACT

The protein otoferlin plays an essential role at the sensory hair cell synapse. Mutations in otoferlin result in deafness and depending on the species, mild to strong vestibular deficits. While studies in mouse models suggest a role for otoferlin in synaptic vesicle exocytosis and endocytosis, it is unclear whether these functions are conserved across species. To address this question, we characterized the impact of otoferlin depletion in zebrafish larvae and found defects in synaptic vesicle recycling, abnormal synaptic ribbons, and higher resting calcium concentrations in hair cells. We also observed abnormal expression of the calcium binding hair cell genes s100s and parvalbumin, as well as the nogo related proteins rtn4rl2a and rtn4rl2b. Exogenous otoferlin partially restored expression of genes affected by endogenous otoferlin depletion. Our results suggest that in addition to vesicle recycling, depletion of otoferlin disrupts resting calcium levels, alters synaptic ribbon architecture, and perturbs transcription of hair cells specific genes during zebrafish development.


Subject(s)
Calcium/metabolism , Synapses/metabolism , Zebrafish/metabolism , Animals , Gene Deletion , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Synapses/genetics , Synapses/pathology , Transcriptome , Zebrafish/genetics
5.
Mol Biol Cell ; 30(3): 293-301, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30516436

ABSTRACT

The precise spatial and temporal expression of genes is essential for proper organismal development. Despite their importance, however, many developmental genes have yet to be identified. We have determined that Fer1l6, a member of the ferlin family of genes, is a novel factor in zebrafish development. We find that Fer1l6 is expressed broadly in the trunk and head of zebrafish larvae and is more restricted to gills and female gonads in adult zebrafish. Using both genetic mutant and morpholino knockdown models, we found that loss of Fer1l6 led to deformation of striated muscle tissues, delayed development of the heart, and high morbidity. Further, expression of genes associated with muscle cell proliferation and differentiation were affected. Fer1l6 was also detected in the C2C12 cell line, and unlike other ferlin homologues, we found Fer1l6 expression was independent of the myoblast-to-myotube transition. Finally, analysis of cell and recombinant protein-based assays indicate that Fer1l6 colocalizes with syntaxin 4 and vinculin, and that the putative C2 domains interact with lipid membranes. We conclude that Fer1l6 has diverged from other vertebrate ferlins to play an essential role in zebrafish skeletal and cardiac muscle development.


Subject(s)
Muscle Development , Muscles/embryology , Muscles/metabolism , Vesicular Transport Proteins/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Cells, Cultured , Gene Expression Regulation, Developmental/drug effects , Membrane Lipids/metabolism , Mice , Morpholinos/pharmacology , Muscle Development/drug effects , Muscle Development/genetics , Muscles/ultrastructure , Mutation/genetics , Qa-SNARE Proteins/metabolism , Transcription, Genetic/drug effects , Vesicular Transport Proteins/genetics , Vinculin/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...