Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131342, 2024 May.
Article in English | MEDLINE | ID: mdl-38574921

ABSTRACT

The potential to degrade ochratoxin A (OTA), a highly poisonous mycotoxin, was investigated in cultures from Alcaligenes-type strains. Genome sequence analyses from different Alcaligenes species have permitted us to demonstrate a direct, causal link between the gene coding a known N-acyl-L-amino acid amidohydrolase from A. faecalis (AfOTH) and the OTA-degrading activity of this bacterium. In agreement with this finding, we found the gene coding AfOTH in two additional species included in the Alcaligenes genus, namely, A. pakistanensis, and A. aquatilis, which also degraded OTA. Notably, A. faecalis subsp. faecalis DSM 30030T was able to transform OTα, the product of OTA hydrolysis. AfOTH from A. faecalis subsp. phenolicus DSM 16503T was recombinantly over-produced and enzymatically characterized. AfOTH is a Zn2+-containing metalloenzyme that possesses structural features and conserved residues identified in the M20D family of enzymes. AfOTH is a tetramer in solution that shows both aminoacylase and carboxypeptidase activities. Using diverse potential substrates, namely, N-acetyl-L-amino acids and carbobenzyloxy-L-amino acids, a marked preference towards C-terminal Phe and Tyr residues could be deduced. The structural basis for this specificity has been determined by in silico molecular docking analyses. The amidase activity of AfOTH on C-terminal Phe residues structurally supports its OTA and OTB degradation activity.


Subject(s)
Alcaligenes , Ochratoxins , Ochratoxins/metabolism , Ochratoxins/chemistry , Alcaligenes/enzymology , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Amidohydrolases/genetics , Substrate Specificity , Amino Acid Sequence , Structure-Activity Relationship
2.
Appl Microbiol Biotechnol ; 108(1): 230, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393350

ABSTRACT

The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-ß-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/ß hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/ß hydrolase core composed of a parallel, six-stranded ß-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/ß hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αß hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αß hydrolases are a possible source of new OTA-degrading enzymes.


Subject(s)
Acinetobacter , Mycotoxins , Ochratoxins , Mycotoxins/metabolism , Hydrolases/metabolism , Molecular Docking Simulation , Ochratoxins/metabolism , Ochratoxins/toxicity , Acinetobacter/metabolism , Carboxypeptidases/metabolism , Esterases/metabolism , Amides/metabolism
3.
Int J Biol Macromol ; 237: 124230, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990411

ABSTRACT

The salicylate 1,2-dioxygenase from the bacterium Pseudaminobacter salicylatoxidans DSM 6986T (PsSDO) is a versatile metalloenzyme that participates in the aerobic biodegradation of aromatic compounds, such as gentisates and salicylates. Surprisingly, and unrelated to this metabolic role, it has been reported that PsSDO may transform the mycotoxin ochratoxin A (OTA), a molecule that appears in numerous food products that results in serious biotechnological concern. In this work, we show that PsSDO, together with its dioxygenase activity, behaves as an amidohydrolase with a marked specificity for substrates containing a C-terminal phenylalanine residue, similar to OTA, although its presence is not an absolute requirement. This side chain would establish aromatic stacking interactions with the indole ring of Trp104. PsSDO hydrolysed the amide bond of OTA rendering the much less toxic ochratoxin α and L-ß-phenylalanine. The binding mode of OTA and of a diverse set of synthetic carboxypeptidase substrates these substrates have been characterized by molecular docking simulations, which has permitted us to propose a catalytic mechanism of hydrolysis by PsSDO that, similarly to metallocarboxypeptidases, assumes a water-induced pathway following a general acid/base mechanism in which the side chain of Glu82 would provide the solvent nucleophilicity required for the enzymatic reaction. Since the PsSDO chromosomal region, absent in other Pseudaminobacter strains, contained a set of genes present in conjugative plasmids, it could have been acquired by horizontal gene transfer, probably from a Celeribacter strain.


Subject(s)
Dioxygenases , Mycotoxins , Salicylates/chemistry , Dioxygenases/genetics , Molecular Docking Simulation , Phenylalanine
4.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233108

ABSTRACT

One of the major drawbacks of the industrial implementation of enzymatic processes is the low operational stability of the enzymes under tough industrial conditions. In this respect, the use of thermostable enzymes in the industry is gaining ground during the last decades. Herein, we report a structure-guided approach for the development of novel and thermostable 2'-deoxyribosyltransferases (NDTs) based on the computational design of disulfide bonds on hot spot positions. To this end, a small library of NDT variants from Lactobacillus delbrueckii (LdNDT) with introduced cysteine pairs was created. Among them, LdNDTS104C (100% retained activity) was chosen as the most thermostable variant, displaying a six- and two-fold enhanced long-term stability when stored at 55 °C (t1/255 °C ≈ 24 h) and 60 °C (t1/260 °C ≈ 4 h), respectively. Moreover, the biochemical characterization revealed that LdNDTS104C showed >60% relative activity across a broad range of temperature (30−90 °C) and pH (5−7). Finally, to study the potential application of LdNDTS104C as an industrial catalyst, the enzymatic synthesis of nelarabine was successfully carried out under different substrate conditions (1:1 and 3:1) at different reaction times. Under these experimental conditions, the production of nelarabine was increased up to 2.8-fold (72% conversion) compared with wild-type LdNDT.


Subject(s)
Enzymes, Immobilized , Pentosyltransferases , Arabinonucleosides , Cysteine , Disulfides/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Pentosyltransferases/metabolism , Substrate Specificity , Temperature
5.
Microb Biotechnol ; 15(2): 648-667, 2022 02.
Article in English | MEDLINE | ID: mdl-33336898

ABSTRACT

Colorectal cancer pathogenesis and progression is associated with the presence of Fusobacterium nucleatum and the reduction of acetylated derivatives of spermidine, as well as dietary components such as tannin-rich foods. We show that a new tannase orthologue of F. nucleatum (TanBFnn ) has significant structural differences with its Lactobacillus plantarum counterpart affecting the flap covering the active site and the accessibility of substrates. Crystallographic and molecular dynamics analysis revealed binding of polyamines to a small cavity that connects the active site with the bulk solvent which interact with catalytically indispensable residues. As a result, spermidine and its derivatives, particularly N8 -acetylated spermidine, inhibit the hydrolytic activity of TanBFnn and increase the toxicity of gallotannins to F. nucleatum. Our results support a model in which the balance between the detoxicant activity of TanBFnn and the presence of metabolic inhibitors can dictate either conducive or unfavourable conditions for the survival of F. nucleatum.


Subject(s)
Fusobacterium nucleatum , Hydrolyzable Tannins , Carboxylic Ester Hydrolases/genetics , Spermidine
6.
Appl Microbiol Biotechnol ; 102(16): 6947-6957, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29872887

ABSTRACT

In our search for thermophilic and acid-tolerant nucleoside 2'-deoxyribosyltransferases (NDTs), we found a good candidate in an enzyme encoded by Chroococcidiopsis thermalis PCC 7203 (CtNDT). Biophysical and biochemical characterization revealed CtNDT as a homotetramer endowed with good activity and stability at both high temperatures (50-100 °C) and a wide range of pH values (from 3 to 7). CtNDT recognizes purine bases and their corresponding 2'-deoxynucleosides but is also proficient using cytosine and 2'-deoxycytidine as substrates. These unusual features preclude the strict classification of CtNDT as either a type I or a type II NDT and further suggest that this simple subdivision may need to be updated in the future. Our findings also hint at a possible link between oligomeric state and NDT's substrate specificity. Interestingly from a practical perspective, CtNDT displays high activity (80-100%) in the presence of several water-miscible co-solvents in a proportion of up to 20% and was successfully employed in the enzymatic production of several therapeutic nucleosides such as didanosine, vidarabine, and cytarabine.


Subject(s)
Cyanobacteria/enzymology , Pentosyltransferases , Enzyme Stability , Enzymes, Immobilized/metabolism , Hot Temperature , Pentosyltransferases/biosynthesis , Pentosyltransferases/chemistry , Pentosyltransferases/genetics , Pentosyltransferases/isolation & purification , Solvents/chemistry , Substrate Specificity
7.
Microb Cell Fact ; 17(1): 33, 2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29482557

ABSTRACT

BACKGROUND: Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. RESULTS: We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanBFnp). TanBFnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanBFnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanBFnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanBFnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanBFnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. CONCLUSIONS: We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanBFnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.


Subject(s)
Carboxylic Ester Hydrolases/isolation & purification , Carboxylic Ester Hydrolases/metabolism , Fusobacterium nucleatum/enzymology , Mouth/microbiology , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Humans , Kinetics , Sequence Analysis, DNA , Tannins/metabolism , Temperature
8.
Appl Microbiol Biotechnol ; 101(19): 7187-7200, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28785897

ABSTRACT

Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.


Subject(s)
Leishmania mexicana/enzymology , Nucleosides/biosynthesis , Pentosyltransferases/metabolism , Purines/chemistry , Amino Acid Sequence , Biocatalysis , Cloning, Molecular , Computational Biology , Enzymes, Immobilized , Hydrogen-Ion Concentration , Leishmania mexicana/genetics , Pentosyltransferases/genetics , Protein Conformation , Sequence Alignment , Substrate Specificity , Temperature
9.
Biochim Biophys Acta Proteins Proteom ; 1865(10): 1227-1236, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28734976

ABSTRACT

Statistics from structural genomics initiatives reveal that around 50-55% of the expressed, non-membrane proteins cannot be purified and therefore structurally characterized due to solubility problems, which emphasized protein solubility as one of the most serious concerns in structural biology projects. Lactobacillus plantarum CECT 748T produces an aggregation-prone glycosidase (LpBgl) that we crystallized previously. However, this result could not be reproduced due to protein instability and therefore further high-resolution structural analyses of LpBgl were impeded. The obtained crystals of LpBgl diffracted up to 2.48Å resolution and permitted to solve the structure of the enzyme. Analysis of the active site revealed a pocket for phosphate-binding with an uncommon architecture, where a phosphate molecule is tightly bound suggesting the recognition of 6-phosphoryl sugars. In agreement with this observation, we showed that LpBgl exhibited 6-phospho-ß-glucosidase activity. Combination of structural and mass spectrometry results revealed the formation of dimethyl arsenic adducts on the solvent exposed cysteine residues Cys211 and Cys292. Remarkably, the double mutant Cys211Ser/Cys292Ser resulted stable in solution at high concentrations indicating that the marginal solubility of LpBgl can be ascribed specifically to these two cysteine residues. The 2.30Å crystal structure of this double mutant showed no disorder around the newly incorporated serine residues and also loop rearrangements within the phosphate-binding site. Notably, LpBgl could be prepared at high yield by proteolytic digestion of the fusion protein LSLt-LpBgl, which raises important questions about potential hysteretic processes upon its initial production as an enzyme fused to a solubility enhancer.


Subject(s)
Glycoside Hydrolases/chemistry , Lactobacillus plantarum/chemistry , Solutions/chemistry , Catalytic Domain , Cysteine/chemistry , Cysteine/metabolism , Glucosidases/chemistry , Glucosidases/metabolism , Glycoside Hydrolases/metabolism , Lactobacillus plantarum/metabolism , Phosphates/chemistry , Phosphates/metabolism , Proteolysis , Serine/chemistry , Serine/metabolism , Solubility , Substrate Specificity
10.
Bioconjug Chem ; 27(11): 2734-2743, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27809485

ABSTRACT

Design of generic methods aimed at the oriented attachment of proteins at the interfacial environment of magnetic nanoparticles currently represents an active field of research. With this in mind, we have prepared and characterized agarose-coated maghemite nanoparticles to set up a platform for the attachment of recombinant proteins fused to the ß-trefoil lectin domain LSL150, a small protein that combines fusion tag properties with agarose-binding capacity. Analysis of the agarose-coated nanoparticles by dynamic light scattering, Fourier transform infrared spectroscopy, and thermogravimetric studies shows that decoupling particle formation from agarose coating provides better results in terms of coating efficiency and particle size distribution. LSL150 interacts with these agarose-coated nanoparticles exclusively through the recognition of the sugars of the polymer, forming highly stable complexes, which in turn can be dissociated ad hoc with the competing sugar lactose. Characterization of the complexes formed with the fusion proteins LSL-EGFP (LSL-tagged enhanced green fluorescent protein from Aquorea victoria) and LSL-BTL2 (LSL-tagged lipase from Geobacillus thermocatenolatus) provided evidence supporting a topologically oriented binding of these molecules to the interface of the agarose-coated nanoparticles. This is consistent with the marked polarity of the ß-trefoil structure where the sugar-binding sites and the N- and C-terminus ends are at opposed sides. In summary, LSL150 displays topological and functional features expected from a generic molecular adaptor for the oriented attachment of proteins at the interface of agarose-coated nanoparticles.


Subject(s)
Ferric Compounds/chemistry , Lotus/chemistry , Nanoparticles/chemistry , Plant Lectins/chemistry , Recombinant Fusion Proteins/chemistry , Sepharose/chemistry , Models, Molecular , Protein Domains
11.
Microbiologyopen ; 5(4): 575-81, 2016 08.
Article in English | MEDLINE | ID: mdl-26987659

ABSTRACT

In this work, we explore the refactoring of the circuitry of λ phage by engineering a new-to-nature regulator that responds to an ad hoc input signal that behaves orthogonal with respect to the host cell. We tailored a chimeric regulator, termed Qλ, between the CI protein of the λ phage and the BzdR repressor from Azoarcus sp. strain CIB that responds to benzoyl-CoA. When the Qλ was expressed in the appropriate Escherichia coli cells, it was able to reprogram the lytic/lysogenic λ phage decision according to the intracellular production of benzoyl-CoA. Our results are also an example of how generating new artificial regulators that respond to effectors of choice may be useful to control different cellular processes.


Subject(s)
Acyl Coenzyme A/metabolism , Bacteriophage lambda/growth & development , Bacteriophage lambda/genetics , Gene Expression Regulation, Bacterial/genetics , Lysogeny/genetics , Promoter Regions, Genetic/genetics , Escherichia coli/genetics , Escherichia coli/virology , Transcription, Genetic/genetics
12.
PLoS One ; 10(11): e0142980, 2015.
Article in English | MEDLINE | ID: mdl-26571381

ABSTRACT

Dyskeratosis congenita is an inherited disease caused by mutations in genes coding for telomeric components. It was previously reported that expression of a dyskerin-derived peptide, GSE24.2, increases telomerase activity, regulates gene expression and decreases DNA damage and oxidative stress in dyskeratosis congenita patient cells. The biological activity of short peptides derived from GSE24.2 was tested and one of them, GSE4, that probed to be active, was further characterized in this article. Expression of this eleven amino acids long peptide increased telomerase activity and reduced DNA damage, oxidative stress and cell senescence in dyskerin-mutated cells. GSE4 expression also activated c-myc and TERT promoters and increase of c-myc, TERT and TERC expression. The level of biological activity of GSE4 was similar to that obtained by GSE24.2 expression. Incorporation of a dyskerin nuclear localization signal to GSE24.2 did not change its activity on promoter regulation and DNA damage protection. However, incorporation of a signal that increases the rate of nucleolar localization impaired GSE24.2 activity. Incorporation of the dyskerin nuclear localization signal to GSE4 did not alter its biological activity. Mutation of the Aspartic Acid residue that is conserved in the pseudouridine synthase domain present in GSE4 did not impair its activity, except for the repression of c-myc promoter activity and the decrease of c-myc, TERT and TERC gene expression in dyskerin-mutated cells. These results indicated that GSE4 could be of great therapeutic interest for treatment of dyskeratosis congenita patients.


Subject(s)
Cell Cycle Proteins/genetics , Cellular Senescence , DNA Damage , Mutation/genetics , Nuclear Proteins/genetics , Oxidative Stress , Peptides/metabolism , Telomerase/metabolism , Cell Nucleus/metabolism , Cell Proliferation , Dyskeratosis Congenita/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Nuclear Localization Signals , Peptide Fragments , Promoter Regions, Genetic/genetics
13.
J Agric Food Chem ; 62(22): 5126-32, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24856291

ABSTRACT

Lactobacillus plantarum is a lactic acid bacteria that can be found in numerous fermented foods. Esterases from L. plantarum exert a fundamental role in food aroma. In the present study, the gene lp_2631 encoding a putative esterase was cloned and expressed in Escherichia coli BL21 (DE3) and the overproduced Lp_2631 protein has been biochemically characterized. Lp_2631 exhibited optimal esterase activity at 20 °C and more than 90% of maximal activity at 5 °C, being the first cold-active esterase described in a lactic acid bacteria. Lp_2631 exhibited 40% of its maximal activity after 2 h of incubation at 65 °C. Lp_2631 also showed marked activity in the presence of compounds commonly found in food fermentations, such as NaCl, ethanol, or lactic acid. The results suggest that Lp_2631 might be a useful esterase to be used in food fermentations.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Esterases/chemistry , Esterases/metabolism , Lactobacillus plantarum/enzymology , Bacterial Proteins/genetics , Cheese/microbiology , Cold Temperature , Enzyme Stability , Esterases/genetics , Fermentation , Food Microbiology , Hydrogen-Ion Concentration , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/genetics , Substrate Specificity
14.
J Agric Food Chem ; 62(22): 5118-25, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24856385

ABSTRACT

The gene lp_1002 from Lactobacillus plantarum WCFS1 encoding a putative lipase/esterase was cloned and overexpressed in Escherichia coli BL21(DE3). The purified Lp_1002 protein was biochemically characterized. Lp_1002 is an arylesterase which showed high hydrolytic activity on phenyl acetate. Although to a lesser extent, Lp_1002 also hydrolyzed most of the esters assayed including relevant wine aroma compounds. Importantly, Lp_1002 exhibited hydrolytic activity at winemaking conditions, although optimal catalytic activity is observed at 40 °C and pH 5-7. The effect of wine compounds on Lp_1002 activity was assayed. From the compounds assayed (ethanol, sodium metabisulfite, and malic, tartaric, lactic and citric acids), only malic acid slightly inhibited Lp_1002 activity. Lp_1002 is the first arylesterase described in a wine lactic acid bacteria and possessed suitable biochemical properties to be used during winemaking.


Subject(s)
Bacterial Proteins/chemistry , Carboxylic Ester Hydrolases/chemistry , Esters/metabolism , Lactobacillus plantarum/enzymology , Wine/microbiology , Acetates/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/genetics , Molecular Sequence Data , Phenols/metabolism , Sequence Alignment , Substrate Specificity , Wine/analysis
15.
Appl Environ Microbiol ; 80(10): 2991-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24610854

ABSTRACT

Lactobacillus plantarum is frequently isolated from the fermentation of plant material where tannins are abundant. L. plantarum strains possess tannase activity to degrade plant tannins. An L. plantarum tannase (TanBLp, formerly called TanLp1) was previously identified and biochemically characterized. In this study, we report the identification and characterization of a novel tannase (TanALp). While all 29 L. plantarum strains analyzed in the study possess the tanBLp gene, the gene tanALp was present in only four strains. Upon methyl gallate exposure, the expression of tanBLp was induced, whereas tanALp expression was not affected. TanALp showed only 27% sequence identity to TanBLp, but the residues involved in tannase activity are conserved. Optimum activity for TanALp was observed at 30°C and pH 6 in the presence of Ca(2+) ions. TanALp was able to hydrolyze gallate and protocatechuate esters with a short aliphatic alcohol substituent. Moreover, TanALp was able to fully hydrolyze complex gallotannins, such as tannic acid. The presence of the extracellular TanALp tannase in some L. plantarum strains provides them an advantage for the initial degradation of complex tannins present in plant environments.


Subject(s)
Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Lactobacillus plantarum/enzymology , Tannins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Enzyme Stability , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Molecular Sequence Data , Sequence Alignment , Substrate Specificity
16.
Appl Environ Microbiol ; 79(17): 5130-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23793626

ABSTRACT

Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Lactobacillus plantarum/enzymology , Caffeic Acids/metabolism , Carboxylic Ester Hydrolases/genetics , Cinnamates/metabolism , Gene Expression , Lactobacillus plantarum/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
PLoS One ; 8(3): e57518, 2013.
Article in English | MEDLINE | ID: mdl-23526945

ABSTRACT

The evolution of transcriptional regulators through the recruitment of DNA-binding domains by enzymes is a widely held notion. However, few experimental approaches have directly addressed this hypothesis. Here we report the reconstruction of a plausible pathway for the evolution of an enzyme into a transcriptional regulator. The BzdR protein is the prototype of a subfamily of prokaryotic transcriptional regulators that controls the expression of genes involved in the anaerobic degradation of benzoate. We have shown that BzdR consists of an N-terminal DNA-binding domain connected through a linker to a C-terminal effector-binding domain that shows significant identity to the shikimate kinase (SK). The construction of active synthetic BzdR-like regulators by fusing the DNA-binding domain of BzdR to the Escherichia coli SKI protein strongly supports the notion that an ancestral SK domain could have been involved in the evolutionary origin of BzdR. The loss of the enzymatic activity of the ancestral SK domain was essential for it to evolve as a regulatory domain in the current BzdR protein. This work also supports the view that enzymes precede the emergence of the regulatory systems that may control their expression.


Subject(s)
Escherichia coli Proteins/genetics , Evolution, Molecular , Phosphotransferases (Alcohol Group Acceptor)/genetics , Transcription Factors/genetics , Acyl Coenzyme A/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Genes, Bacterial , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Promoter Regions, Genetic , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
18.
Bioconjug Chem ; 23(3): 565-73, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22372708

ABSTRACT

A highly stable lipase from Geobacillus thermocatenolatus (BTL2) and the enhanced green fluorescent protein from Aquorea victoria (EGFP) were recombinantly produced N-terminally tagged to the lectin domain of the hemolytic pore-forming toxin LSLa from the mushroom Laetiporus sulphureus . Such a domain (LSL(150)), recently described as a novel fusion tag, is based on a ß-trefoil scaffold with two operative binding sites for galactose or galactose-containing derivatives. The fusion proteins herein analyzed have enabled us to characterize the binding mode of LSL(150) to polymeric and solid substrates such as agarose beads. The lectin-fusion proteins are able to be quantitatively bound to both cross-linked and non-cross-linked agarose matrixes in a very rapid manner, resulting in a surprisingly dynamic protein distribution inside the porous beads that evolves from heterogeneous to homogeneous along the postimmobilization time. Such dynamic distribution can be related to the reversible nature of the LSL(150)-agarose interaction. Furthermore, this latter interaction is temperature dependent since it is 4-fold stronger when the immobilization takes place at 25 °C than when it does at 4 °C. The strongest lectin-agarose interaction is also quite stable under a survey of different conditions such as high temperatures (up to 60 °C) or high organic solvent concentrations (up to 60% of acetonitrile). Notably, the use of cross-linked agarose would endow the system with more robustness due to its better mechanical properties compared to the noncross-linked one. The stability of the LSL(150)-agarose interaction would prevent protein leaching during the operation process unless high pH media are used. In summary, we believe that the LSL(150) lectin domain exhibits interesting structural features as an immobilization domain that makes it suitable to reversibly immobilize industrially relevant enzymes in very simple carriers as agarose.


Subject(s)
Lectins/chemistry , Proteins/chemistry , Sepharose/chemistry , Agaricales , Base Sequence , DNA Primers , Electrophoresis, Polyacrylamide Gel , Models, Molecular
19.
Protein Expr Purif ; 76(1): 44-53, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21055470

ABSTRACT

A family of restriction enzyme- and ligation-independent cloning vectors has been developed for producing recombinant His-tagged fusion proteins in Escherichia coli. These are based on pURI2 and pURI3 expression vectors which have been previously used for the successful production of recombinant proteins at the milligram scale. The newly designed vectors combines two different promoters (lpp(p)-5 and T7 RNA polymerase Ø10), two different endoprotease recognition sites for the His6-tag removal (enterokinase and tobacco etch virus), different antibiotic selectable markers (ampicillin and erythromycin resistance), and different placements of the His6-tag (N- and C-terminus). A single gene can be cloned and further expressed in the eight pURI vectors by using six nucleotide primers, avoiding the restriction enzyme and ligation steps. A unique NotI site was introduced to facilitate the selection of the recombinant plasmid. As a case study, the new vectors have been used to clone the gene coding for the phenolic acid decarboxylase from Lactobacillus plantarum. Interestingly, the obtained results revealed markedly different production levels of the target protein, emphasizing the relevance of the cloning strategy on soluble protein production yield. Efficient purification and tag removal steps showed that the affinity tag and the protease cleavage sites functioned properly. The novel family of pURI vectors designed for parallel cloning is a useful and versatile tool for the production and purification of a protein of interest.


Subject(s)
Cloning, Molecular/methods , Genetic Vectors , Recombinant Fusion Proteins/genetics , Base Sequence , Carboxy-Lyases/biosynthesis , Carboxy-Lyases/genetics , Endopeptidases/genetics , Escherichia coli , Histidine/genetics , Lactobacillus plantarum/enzymology , Molecular Sequence Data , Oligopeptides/genetics , Recombinant Fusion Proteins/biosynthesis
20.
J Biol Chem ; 285(46): 35694-705, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-20826820

ABSTRACT

The BzdR transcriptional regulator that controls the P(N) promoter responsible for the anaerobic catabolism of benzoate in Azoarcus sp. CIB constitutes the prototype of a new subfamily of transcriptional regulators. Here, we provide some insights about the functional-structural relationships of the BzdR protein. Analytical ultracentrifugation studies revealed that BzdR is homodimeric in solution. An electron microscopy three-dimensional reconstruction of the BzdR dimer has been obtained, and the predicted structures of the respective N- and C-terminal domains of each BzdR monomer could be fitted into such a reconstruction. Gel retardation and ultracentrifugation experiments have shown that the binding of BzdR to its cognate promoter is cooperative. Different biochemical approaches revealed that the effector molecule benzoyl-CoA induces conformational changes in BzdR without affecting its oligomeric state. The BzdR-dependent inhibition of the P(N) promoter and its activation in the presence of benzoyl-CoA have been established by in vitro transcription assays. The monomeric BzdR4 and BzdR5 mutant regulators revealed that dimerization of BzdR is essential for DNA binding. Remarkably, a BzdRΔL protein lacking the linker region connecting the N- and C-terminal domains of BzdR is also dimeric and behaves as a super-repressor of the P(N) promoter. These data suggest that the linker region of BzdR is not essential for protein dimerization, but rather it is required to transfer the conformational changes induced by the benzoyl-CoA to the DNA binding domain leading to the release of the repressor. A model of action of the BzdR regulator has been proposed.


Subject(s)
Azoarcus/metabolism , Bacterial Proteins/chemistry , Protein Conformation , Trans-Activators/chemistry , Acyl Coenzyme A/metabolism , Amino Acid Sequence , Azoarcus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/genetics , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Mutation , Promoter Regions, Genetic/genetics , Protein Binding , Protein Multimerization , Trans-Activators/genetics , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...