Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 601(7893): 397-403, 2022 01.
Article in English | MEDLINE | ID: mdl-34912114

ABSTRACT

The cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences1-5. However, the developmental potential of human cortical progenitors has not been thoroughly explored. Here we show that, in addition to excitatory neurons and glia, human cortical progenitors are also capable of producing GABAergic neurons with the transcriptional characteristics and morphologies of cortical interneurons. By developing a cellular barcoding tool called 'single-cell-RNA-sequencing-compatible tracer for identifying clonal relationships' (STICR), we were able to carry out clonal lineage tracing of 1,912 primary human cortical progenitors from six specimens, and to capture both the transcriptional identities and the clonal relationships of their progeny. A subpopulation of cortically born GABAergic neurons was transcriptionally similar to cortical interneurons born from the caudal ganglionic eminence, and these cells were frequently related to excitatory neurons and glia. Our results show that individual human cortical progenitors can generate both excitatory neurons and cortical interneurons, providing a new framework for understanding the origins of neuronal diversity in the human cortex.


Subject(s)
Cell Lineage , Cerebral Cortex , Interneurons , Neural Inhibition , Neurons , Cerebral Cortex/cytology , GABAergic Neurons/cytology , Humans , Interneurons/cytology , Neurons/cytology
2.
Nature ; 587(7832): 145-151, 2020 11.
Article in English | MEDLINE | ID: mdl-32908311

ABSTRACT

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear1. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus2 and binding diverse proteins3-5 to achieve X-chromosome inactivation (XCI)6,7. The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment. The properties of the inactive X (Xi)-compartment are known to change over time, because after initial Xist spreading and transcriptional shutoff a state is reached in which gene silencing remains stable even if Xist is turned off8. Here we show that the Xist RNA-binding proteins PTBP19, MATR310, TDP-4311 and CELF112 assemble on the multivalent E-repeat element of Xist7 and, via self-aggregation and heterotypic protein-protein interactions, form a condensate1 in the Xi. This condensate is required for gene silencing and for the anchoring of Xist to the Xi territory, and can be sustained in the absence of Xist. Notably, these E-repeat-binding proteins become essential coincident with transition to the Xist-independent XCI phase8, indicating that the condensate seeded by the E-repeat underlies the developmental switch from Xist-dependence to Xist-independence. Taken together, our data show that Xist forms the Xi compartment by seeding a heteromeric condensate that consists of ubiquitous RNA-binding proteins, revealing an unanticipated mechanism for heritable gene silencing.


Subject(s)
Gene Silencing , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , Animals , CELF1 Protein/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Female , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Nuclear Matrix-Associated Proteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , X Chromosome Inactivation/genetics
3.
Elife ; 92020 07 07.
Article in English | MEDLINE | ID: mdl-32633719

ABSTRACT

Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Here, we show that loss of clustered gamma protocadherins (Pcdhg), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Surprisingly, electrophysiological and morphological properties of Pcdhg-deficient and wild-type cINs during the period of cIN cell death were indistinguishable. Co-transplantation of wild-type with Pcdhg-deficient interneuron precursors further reduced mutant cIN survival, but the proportion of mutant and wild-type cells undergoing cell death was not affected by their density. Transplantation also allowed us to test for the contribution of Pcdhg isoforms to the regulation of cIN cell death. We conclude that Pcdhg, specifically Pcdhgc3, Pcdhgc4, and Pcdhgc5, play a critical role in regulating cIN survival during the endogenous period of programmed cIN death.


Subject(s)
Apoptosis , Cadherins/metabolism , Cerebral Cortex/physiology , Interneurons/physiology , Animals , Cadherin Related Proteins , Female , Male , Mice
4.
Prog Brain Res ; 231: 57-85, 2017.
Article in English | MEDLINE | ID: mdl-28554401

ABSTRACT

Many neurological disorders stem from defects in or the loss of specific neurons. Neuron transplantation has tremendous clinical potential for central nervous system therapy as it may allow for the targeted replacement of those cells that are lost in diseases. Normally, most neurons are added during restricted periods of embryonic and fetal development. The permissive milieu of the developing brain promotes neuronal migration, neuronal differentiation, and synaptogenesis. Once this active period of neurogenesis ends, the chemical and physical environment of the brain changes dramatically. The brain parenchyma becomes highly packed with neuronal and glial processes, extracellular matrix, myelin, and synapses. The migration of grafted cells to allow them to home into target regions and become functionally integrated is a key challenge to neuronal transplantation. Interestingly, transplanted young telencephalic inhibitory interneurons are able to migrate, differentiate, and integrate widely throughout the postnatal brain. These grafted interneurons can also functionally modify local circuit activity. These features have facilitated the use of interneuron transplantation to study fundamental neurodevelopmental processes including cell migration, cell specification, and programmed neuronal cell death. Additionally, these cells provide a unique opportunity to develop interneuron-based strategies for the treatment of diseases linked to interneuron dysfunction and neurological disorders associated to circuit hyperexcitability.


Subject(s)
Cell- and Tissue-Based Therapy , Interneurons/transplantation , Cell Differentiation , Cell Movement , Humans , Neurogenesis , Synapses
5.
Proc Natl Acad Sci U S A ; 113(50): 14408-14413, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911847

ABSTRACT

The rapid spread of Zika virus (ZIKV) and its association with abnormal brain development constitute a global health emergency. Congenital ZIKV infection produces a range of mild to severe pathologies, including microcephaly. To understand the pathophysiology of ZIKV infection, we used models of the developing brain that faithfully recapitulate the tissue architecture in early to midgestation. We identify the brain cell populations that are most susceptible to ZIKV infection in primary human tissue, provide evidence for a mechanism of viral entry, and show that a commonly used antibiotic protects cultured brain cells by reducing viral proliferation. In the brain, ZIKV preferentially infected neural stem cells, astrocytes, oligodendrocyte precursor cells, and microglia, whereas neurons were less susceptible to infection. These findings suggest mechanisms for microcephaly and other pathologic features of infants with congenital ZIKV infection that are not explained by neural stem cell infection alone, such as calcifications in the cortical plate. Furthermore, we find that blocking the glia-enriched putative viral entry receptor AXL reduced ZIKV infection of astrocytes in vitro, and genetic knockdown of AXL in a glial cell line nearly abolished infection. Finally, we evaluate 2,177 compounds, focusing on drugs safe in pregnancy. We show that the macrolide antibiotic azithromycin reduced viral proliferation and virus-induced cytopathic effects in glial cell lines and human astrocytes. Our characterization of infection in the developing human brain clarifies the pathogenesis of congenital ZIKV infection and provides the basis for investigating possible therapeutic strategies to safely alleviate or prevent the most severe consequences of the epidemic.


Subject(s)
Azithromycin/pharmacology , Brain/embryology , Brain/virology , Viral Tropism/drug effects , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Zika Virus/physiology , Brain/pathology , Cell Line , Cytopathogenic Effect, Viral/drug effects , Female , Humans , Infant, Newborn , Microbial Sensitivity Tests , Microcephaly/drug therapy , Microcephaly/embryology , Microcephaly/pathology , Neuroglia/drug effects , Neuroglia/pathology , Neuroglia/virology , Pregnancy , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/physiology , Viral Tropism/physiology , Virus Internalization/drug effects , Virus Replication/drug effects , Zika Virus/pathogenicity , Zika Virus Infection/embryology , Zika Virus Infection/pathology , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...