Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714719

ABSTRACT

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Subject(s)
Cryoelectron Microscopy , Ferritins , Nuclear Receptor Coactivators , Ferritins/metabolism , Ferritins/chemistry , Ferritins/genetics , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Protein Binding , Binding Sites , Iron/metabolism , Autophagy , Models, Molecular , HEK293 Cells , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Proteolysis , Mutation
2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617233

ABSTRACT

Ferroptosis is an iron-dependent, non-apoptotic form of cell death resulting from the accumulation of lipid peroxides. Colorectal cancer (CRC) accumulates high levels of intracellular iron and reactive oxygen species (ROS), thereby sensitizing cells to ferroptosis. The selenoprotein glutathione peroxidase (GPx4) is a key enzyme in the detoxification of lipid peroxides and can be inhibited by the compound (S)-RSL3 ([1S,3R]-RSL3). However, the stereoisomer (R)-RSL3 ([1R,3R]-RSL3), which does not inhibit GPx4, exhibits equipotent activity to (S)-RSL3 across a panel of CRC cell lines. Utilizing CRC cell lines with an inducible knockdown of GPx4, we demonstrate that (S)-RSL3 sensitivity does not align with GPx4 dependency. Subsequently, a biotinylated (S)-RSL3 was then synthesized to perform affinity purification-mass spectrometry (AP-MS), revealing that (S)-RSL3 acts as a pan-inhibitor of the selenoproteome, targeting both the glutathione and thioredoxin peroxidase systems as well as multiple additional selenoproteins. To investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed further chemical and genetic approaches to disrupt selenoprotein function. The findings demonstrate that the selenoprotein inhibitor Auranofin can induce ferroptosis and/or oxidative cell death both in-vitro and in-vivo. Consistent with this data we observe that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translational incorporation of selenocysteine, is essential for CRC growth. In summary, our research elucidates the complex mechanisms underlying ferroptosis in CRC and reveals that modulation of the selenoproteome provides multiple new therapeutic targets and opportunities in CRC.

3.
Blood ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518102

ABSTRACT

Iron-mediated induction of BMP6 expression by liver endothelial cells is essential for iron homeostasis regulation. We utilized multiple dietary and genetic mouse cohorts to demonstrate a minor functional role for ZIP8 in regulating BMP6 expression under high-iron conditions.

4.
Clin Cancer Res ; 30(3): 542-553, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37733830

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) trials have evaluated CTLA-4 and/or PD-(L)1 blockade in patients with advanced disease in which bulky tumor burden and limited time to develop antitumor T cells may have contributed to poor clinical efficacy. Here, we evaluated peripheral blood and tumor T cells from patients with PDAC receiving neoadjuvant chemoradiation plus anti-PD-1 (pembrolizumab) versus chemoradiation alone. We analyzed whether PD-1 blockade successfully reactivated T cells in the blood and/or tumor to determine whether lack of clinical benefit could be explained by lack of reactivated T cells versus other factors. EXPERIMENTAL DESIGN: We used single-cell transcriptional profiling and TCR clonotype tracking to identify TCR clonotypes from blood that match clonotypes in the tumor. RESULTS: PD-1 blockade increases the flux of TCR clonotypes entering cell cycle and induces an IFNγ signature like that seen in patients with other GI malignancies who respond to PD-1 blockade. However, these reactivated T cells have a robust signature of NF-κB signaling not seen in cases of PD-1 antibody response. Among paired samples between blood and tumor, several of the newly cycling clonotypes matched activated T-cell clonotypes observed in the tumor. CONCLUSIONS: Cytotoxic T cells in the blood of patients with PDAC remain sensitive to reinvigoration by PD-1 blockade, and some have tumor-recognizing potential. Although these T cells proliferate and have a signature of IFN exposure, they also upregulate NF-κB signaling, which potentially counteracts the beneficial effects of anti-PD-1 reinvigoration and marks these T cells as non-productive contributors to antitumor immunity. See related commentary by Lander and DeNardo, p. 474.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , NF-kappa B , Programmed Cell Death 1 Receptor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , T-Lymphocytes, Cytotoxic/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes
5.
Radiother Oncol ; 191: 110064, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135187

ABSTRACT

BACKGROUND AND PURPOSE: Radiation dose escalation may improve local control (LC) and overall survival (OS) in select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. MATERIALS AND METHODS: This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and chemotherapy were permitted after SMART. RESULTS: Mean age was 65.7 years (range, 36-85), induction FOLFIRINOX was common (81.7 %), most received elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 4.6 %, and 11.5 % patients, respectively. CONCLUSIONS: Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe toxicity. Additional prospective evaluation of this novel strategy is warranted.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Radiotherapy Planning, Computer-Assisted , Radiosurgery/adverse effects
6.
iScience ; 26(12): 108555, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125029

ABSTRACT

Hepcidin is the master hormone governing systemic iron homeostasis. Iron regulates hepcidin by activating bone morphogenetic protein (BMP)6 expression in liver endothelial cells (LECs), but the mechanisms are incompletely understood. To address this, we performed proteomics and RNA-sequencing on LECs from iron-adequate and iron-loaded mice. Gene set enrichment analysis identified transcription factors activated by high iron, including Nrf-2, which was previously reported to contribute to BMP6 regulation, and c-Jun. Jun (encoding c-Jun) knockdown blocked Bmp6 but not Nrf-2 pathway induction by iron in LEC cultures. Chromatin immunoprecipitation of mouse livers showed iron-dependent c-Jun binding to predicted sites in Bmp6 regulatory regions. Finally, c-Jun inhibitor blunted induction of Bmp6 and hepcidin, but not Nrf-2 activity, in iron-loaded mice. However, Bmp6 and iron parameters were unchanged in endothelial Jun knockout mice. Our data suggest that c-Jun participates in iron-mediated BMP6 regulation independent of Nrf-2, though the mechanisms may be redundant and/or multifactorial.

7.
Int J Radiat Oncol Biol Phys ; 117(2): 301-311, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37230432

ABSTRACT

Access to gender-affirming surgery is increasing for many transgender and nonbinary people in the United States, and radiation oncologists must be equipped to care for patients who have undergone such surgery in the region of their planned radiation treatment field. There are no guidelines for radiation treatment planning after gender-affirming surgery, and most oncologists do not receive training in the unique needs of transgender people with cancer. We review common gender-affirming genitopelvic surgeries for transfeminine people, including vaginoplasty, labiaplasty, and orchiectomy, and summarize the existing literature on the treatment of cancers of the neovagina, anus, rectum, prostate, and bladder in these patients. We also describe our systematic treatment approach and rationale for pelvic radiation treatment planning.


Subject(s)
Neoplasms , Sex Reassignment Surgery , Transgender Persons , Male , Female , Humans , Radiation Oncologists , Vagina , Anal Canal , Neoplasms/surgery
8.
Int J Radiat Oncol Biol Phys ; 117(4): 799-808, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37210048

ABSTRACT

PURPOSE: Magnetic resonance (MR) image guidance may facilitate safe ultrahypofractionated radiation dose escalation for inoperable pancreatic ductal adenocarcinoma. We conducted a prospective study evaluating the safety of 5-fraction Stereotactic MR-guided on-table Adaptive Radiation Therapy (SMART) for locally advanced (LAPC) and borderline resectable pancreatic cancer (BRPC). METHODS AND MATERIALS: Patients with LAPC or BRPC were eligible for this multi-institutional, single-arm, phase 2 trial after ≥3 months of systemic therapy without evidence of distant progression. Fifty gray in 5 fractions was prescribed on a 0.35T MR-guided radiation delivery system. The primary endpoint was acute grade ≥3 gastrointestinal (GI) toxicity definitely attributed to SMART. RESULTS: One hundred thirty-six patients (LAPC 56.6%, BRPC 43.4%) were enrolled between January 2019 and January 2022. Mean age was 65.7 (36-85) years. Head of pancreas lesions were most common (66.9%). Induction chemotherapy mostly consisted of (modified)FOLFIRINOX (65.4%) or gemcitabine/nab-paclitaxel (16.9%). Mean CA19-9 after induction chemotherapy and before SMART was 71.7 U/mL (0-468). On-table adaptive replanning was performed for 93.1% of all delivered fractions. Median follow-up from diagnosis and SMART was 16.4 and 8.8 months, respectively. The incidence of acute grade ≥3 GI toxicity possibly or probably attributed to SMART was 8.8%, including 2 postoperative deaths that were possibly related to SMART in patients who had surgery. There was no acute grade ≥3 GI toxicity definitely related to SMART. One-year overall survival from SMART was 65.0%. CONCLUSIONS: The primary endpoint of this study was met with no acute grade ≥3 GI toxicity definitely attributed to ablative 5-fraction SMART. Although it is unclear whether SMART contributed to postoperative toxicity, we recommend caution when pursuing surgery, especially with vascular resection after SMART. Additional follow-up is ongoing to evaluate late toxicity, quality of life, and long-term efficacy.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prospective Studies , Radiotherapy Planning, Computer-Assisted , Quality of Life , Pancreas , Magnetic Resonance Spectroscopy , Radiosurgery/methods , Pancreatic Neoplasms
9.
J Biol Chem ; 299(5): 104691, 2023 05.
Article in English | MEDLINE | ID: mdl-37037306

ABSTRACT

Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Mitophagy , Protein Kinases , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Ferritins , Iron/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Sci Adv ; 9(16): eadf9284, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075122

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) cells maintain a high level of autophagy, allowing them to thrive in an austere microenvironment. However, the processes through which autophagy promotes PDAC growth and survival are still not fully understood. Here, we show that autophagy inhibition in PDAC alters mitochondrial function by losing succinate dehydrogenase complex iron sulfur subunit B expression by limiting the availability of the labile iron pool. PDAC uses autophagy to maintain iron homeostasis, while other tumor types assessed require macropinocytosis, with autophagy being dispensable. We observed that cancer-associated fibroblasts can provide bioavailable iron to PDAC cells, promoting resistance to autophagy ablation. To overcome this cross-talk, we used a low-iron diet and demonstrated that this augmented the response to autophagy inhibition therapy in PDAC-bearing mice. Our work highlights a critical link between autophagy, iron metabolism, and mitochondrial function that may have implications for PDAC progression.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Autophagy , Homeostasis , Mitochondria/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
11.
J Appl Clin Med Phys ; 24(7): e13965, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36924220

ABSTRACT

PURPOSE: The role of biliary stents in image-guided localization for pancreatic cancer has been inconclusive. To date, stent accuracy has been largely evaluated against implanted fiducials on cone beam computed tomography. We aim to use magnetic resonance (MR) soft tissue as a direct reference to examine the geometric and dosimetric impacts of stent-based localization on the newly available MR linear accelerator. METHODS: Thirty pancreatic cancer patients (132 fractions) treated on our MR linear accelerator were identified to have a biliary stent. In our standard adaptive workflow, patients were set up to the target using soft tissue for image registration and structures were re-contoured on daily MR images. The original plan was then projected on treatment anatomy and dose predicted, followed by plan re-optimization and treatment delivery. These online predicted plans were soft tissue-based and served as reference plans. Retrospective image registration to the stent was performed offline to simulate stent-based localization and the magnitude of shifts was taken as the geometric accuracy of stent localization. New predicted plans were generated based on stent-alignment for dosimetric comparison. RESULTS: Shifts were within 3 mm for 90% of the cases (mean = 1.5 mm); however, larger shifts up to 7.2 mm were observed. Average PTV coverage dropped by 1.1% with a maximum drop of 26.8%. The mean increase in V35Gy was 0.15, 0.05, 0.02, and 0.02 cc for duodenum, stomach, small bowel and large bowel, respectively. Stent alignment was significantly worse for all metrics except for small bowel (p = 0.07). CONCLUSIONS: Overall discrepancy between stent- and soft tissue-alignment was modest; however, large discrepancies were observed for select cases. While PTV coverage loss may be compensated for by using a larger margin, the increase in dose to gastrointestinal organs at risk may limit the role of biliary stents in image-guided localization.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Humans , Radiosurgery/methods , Retrospective Studies , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/surgery , Stents , Magnetic Resonance Spectroscopy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods , Pancreatic Neoplasms
12.
Cancer Res ; 83(3): 441-455, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36459568

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has been classified into classical and basal-like transcriptional subtypes by bulk RNA measurements. However, recent work has uncovered greater complexity to transcriptional subtypes than was initially appreciated using bulk RNA expression profiling. To provide a deeper understanding of PDAC subtypes, we developed a multiplex immunofluorescence (mIF) pipeline that quantifies protein expression of six PDAC subtype markers (CLDN18.2, TFF1, GATA6, KRT17, KRT5, and S100A2) and permits spatially resolved, single-cell interrogation of pancreatic tumors from resection specimens and core needle biopsies. Both primary and metastatic tumors displayed striking intratumoral subtype heterogeneity that was associated with patient outcomes, existed at the scale of individual glands, and was significantly reduced in patient-derived organoid cultures. Tumor cells co-expressing classical and basal markers were present in > 90% of tumors, existed on a basal-classical polarization continuum, and were enriched in tumors containing a greater admixture of basal and classical cell populations. Cell-cell neighbor analyses within tumor glands further suggested that co-expressor cells may represent an intermediate state between expression subtype poles. The extensive intratumoral heterogeneity identified through this clinically applicable mIF pipeline may inform prognosis and treatment selection for patients with PDAC. SIGNIFICANCE: A high-throughput pipeline using multiplex immunofluorescence in pancreatic cancer reveals striking expression subtype intratumoral heterogeneity with implications for therapy selection and identifies co-expressor cells that may serve as intermediates during subtype switching.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Prognosis , Phenotype , RNA , Gene Expression Regulation, Neoplastic , Claudins
13.
Genes (Basel) ; 13(12)2022 12 15.
Article in English | MEDLINE | ID: mdl-36553637

ABSTRACT

Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) are rare genetic diseases with a number of common clinical features ranging from early-childhood obesity and retinal degeneration. ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes, encoding them as cilia-localized proteins in multiple target organs. The aim of this study was to perform transcriptomic and proteomic analysis on cellular models of ALMS and BBS syndromes to identify common and distinct pathological mechanisms present in both syndromes. For this purpose, epithelial cells were isolated from the urine of patients and healthy subjects, which were then cultured and reprogrammed into induced pluripotent stem (iPS) cells. The pathways of genes associated with the metabolism of lipids and glycosaminoglycan and the transport of small molecules were found to be concomitantly downregulated in both diseases, while transcripts related to signal transduction, the immune system, cell cycle control and DNA replication and repair were upregulated. Furthermore, protein pathways associated with autophagy, apoptosis, cilium assembly and Gli1 protein were upregulated in both ciliopathies. These results provide new insights into the common and divergent pathogenic pathways between two similar genetic syndromes, particularly in relation to primary cilium function and abnormalities in cell differentiation.


Subject(s)
Alstrom Syndrome , Bardet-Biedl Syndrome , Ciliopathies , Pediatric Obesity , Child , Humans , Bardet-Biedl Syndrome/genetics , Transcriptome/genetics , Proteomics , Pediatric Obesity/complications , Alstrom Syndrome/genetics , Proteins/genetics
14.
Elife ; 112022 10 27.
Article in English | MEDLINE | ID: mdl-36300789

ABSTRACT

The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.


Subject(s)
Cysteine , Hippo Signaling Pathway , Humans , Animals , Mice , Research Design , Transcriptional Activation , Transplantation, Heterologous
15.
Clin Cancer Res ; 28(23): 5167-5179, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36129461

ABSTRACT

PURPOSE: Neoadjuvant chemotherapy is increasingly administered to patients with resectable or borderline resectable pancreatic ductal adenocarcinoma (PDAC), yet its impact on the tumor immune microenvironment is incompletely understood. DESIGN: We employed quantitative, spatially resolved multiplex immunofluorescence and digital image analysis to identify T-cell subpopulations, macrophage polarization states, and myeloid cell subpopulations in a multi-institution cohort of up-front resected primary tumors (n = 299) and in a comparative set of resected tumors after FOLFIRINOX-based neoadjuvant therapy (n = 36) or up-front surgery (n = 30). Multivariable-adjusted Cox proportional hazards models were used to evaluate associations between the immune microenvironment and patient outcomes. RESULTS: In the multi-institutional resection cohort, immune cells exhibited substantial heterogeneity across patient tumors and were located predominantly in stromal regions. Unsupervised clustering using immune cell densities identified four main patterns of immune cell infiltration. One pattern, seen in 20% of tumors and characterized by abundant T cells (T cell-rich) and a paucity of immunosuppressive granulocytes and macrophages, was associated with improved patient survival. Neoadjuvant chemotherapy was associated with a higher CD8:CD4 ratio, greater M1:M2-polarized macrophage ratio, and reduced CD15+ARG1+ immunosuppressive granulocyte density. Within neoadjuvant-treated tumors, 72% showed a T cell-rich pattern with low immunosuppressive granulocytes and macrophages. M1-polarized macrophages were located closer to tumor cells after neoadjuvant chemotherapy, and colocalization of M1-polarized macrophages and tumor cells was associated with greater tumor pathologic response and improved patient survival. CONCLUSIONS: Neoadjuvant chemotherapy with FOLFIRINOX shifts the PDAC immune microenvironment toward an anti-tumorigenic state associated with improved patient survival.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Neoadjuvant Therapy/methods , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/pathology , Adenocarcinoma/pathology , Tumor Microenvironment , Pancreatic Neoplasms
16.
Cancer Discov ; 12(9): 2180-2197, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771492

ABSTRACT

Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC, we demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability, thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with the development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in patients with PDAC. Together, our data reveal that the maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC. SIGNIFICANCE: Autophagy and iron metabolism are metabolic dependencies in PDAC. However, targeted therapies for these pathways are lacking. We identify NCOA4-mediated selective autophagy of ferritin ("ferritinophagy") as upregulated in PDAC. Ferritinophagy supports PDAC iron metabolism and thereby tumor progression and represents a new therapeutic target in PDAC. See related commentary by Jain and Amaravadi, p. 2023. See related article by Ravichandran et al., p. 2198. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Carcinoma, Pancreatic Ductal , Iron-Sulfur Proteins , Pancreatic Neoplasms , Animals , Autophagy/drug effects , Autophagy/genetics , Biological Availability , Carcinoma, Pancreatic Ductal/genetics , Ferritins/genetics , Ferritins/metabolism , Humans , Iron/metabolism , Iron/pharmacology , Iron-Sulfur Proteins/metabolism , Mice , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Pancreatic Neoplasms/genetics , Sulfur/metabolism , Transcription Factors/metabolism , Pancreatic Neoplasms
17.
Cancer Discov ; 12(9): 2198-2219, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771494

ABSTRACT

The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition. SIGNIFICANCE: Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Carcinoma, Pancreatic Ductal , Iron-Sulfur Proteins , Pancreatic Neoplasms , Humans , Biological Availability , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Iron/metabolism , Iron/therapeutic use , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/therapeutic use , Nuclear Receptor Coactivators/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Sulfur/metabolism , Sulfur/therapeutic use , Transcription Factors/metabolism , Pancreatic Neoplasms
18.
Cancer Epidemiol Biomarkers Prev ; 31(6): 1139-1145, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35320352

ABSTRACT

More than 75% of cancer-related deaths occur from cancers for which we do not screen. New screening liquid biopsies may help fill these clinical gaps, although evidence of benefit still needs to be assessed. Which lessons can we learn from previous efforts to guide those of the future? Screening trials for ovarian, prostate, pancreatic, and esophageal cancers are revisited to assess the evidence, which has been limited by small effect sizes, short duration of early-stage disease relative to screening frequency, study design, and confounding factors. Randomized controlled trials (RCT) to show mortality reduction have required millions of screening-years, two-decade durations, and been susceptible to external confounding. Future RCTs with late-stage incidence as a surrogate endpoint could substantially reduce these challenges, and clinical studies demonstrating safety and effectiveness of screening in high-risk populations may enable extrapolation to broader average-risk populations. Multicancer early detection tests provide an opportunity to advance these practical study designs. Conditional approvals based on RCTs with surrogate endpoints, contingent upon real world evidence generation and continuation of trials to definitive endpoints, may lower practical barriers to innovation in cancer screening and enable greater progress.


Subject(s)
Early Detection of Cancer , Neoplasms , Humans , Incidence , Male , Mass Screening , Neoplasms/diagnosis , Neoplasms/prevention & control , Prostate
19.
Blood ; 139(16): 2547-2552, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34990508

ABSTRACT

Intestinal iron absorption is activated during increased systemic demand for iron. The best-studied example is iron deficiency anemia, which increases intestinal iron absorption. Interestingly, the intestinal response to anemia is very similar to that of iron overload disorders, as both the conditions activate a transcriptional program that leads to a hyperabsorption of iron via the transcription factor hypoxia-inducible factor 2α (HIF2α). However, pathways for selective targeting of intestine-mediated iron overload remain unknown. Nuclear receptor coactivator 4 (NCOA4) is a critical cargo receptor for autophagic breakdown of ferritin and the subsequent release of iron, in a process termed ferritinophagy. Our work demonstrates that NCOA4-mediated intestinal ferritinophagy is integrated into systemic iron demand via HIF2α. To demonstrate the importance of the intestinal HIF2α/ferritinophagy axis in systemic iron homeostasis, whole-body and intestine-specific NCOA4-/- mouse lines were generated and assessed. The analyses revealed that the intestinal and systemic response to iron deficiency was not altered after disruption of intestinal NCOA4. However, in a mouse model of hemochromatosis, ablation of intestinal NCOA4 was protective against iron overload. Therefore, NCOA4 can be selectively targeted for the management of iron overload disorders without disrupting the physiological processes involved in the response to systemic iron deficiency.


Subject(s)
Anemia , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hemochromatosis , Iron Overload , Animals , Enterocytes/metabolism , Hemochromatosis/genetics , Iron/metabolism , Mice , Nuclear Receptor Coactivators/genetics , Transcription Factors/metabolism
20.
Cancer Discov ; 12(2): 432-449, 2022 02.
Article in English | MEDLINE | ID: mdl-34531254

ABSTRACT

CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems , Leukemia, Myeloid, Acute/drug therapy , Precision Medicine , Xenograft Model Antitumor Assays , Animals , Humans , Leukemia, Myeloid, Acute/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...