Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005803

ABSTRACT

Soil salinity is a well-known abiotic factor affecting the germination and seedling growth of various plant species. Therefore, we evaluated the effects of different chloride salts (NaCl, KCl and MgCl2) and sulfate salts (Na2SO4, K2SO4 and MgSO4) on the seed germination and early seedling growth of two important ethnomedicinal shrubs of North Africa and the Mediterranean basin (Ballota hirsuta and Myrtus communis). Seeds of these species were subjected to five salinity levels (0-100 mM) and incubated at 20 °C under a light regime (12 h photoperiod). Both species demonstrated their highest germination percentage under control conditions (i.e., without salinity). However, as salinity levels increased, the germination percentages for both species decreased, regardless of the type of salt used. Cations appeared to be more determinative than the anions in regulating the seed germination of both species. M. communis seeds displayed greater sensitivity to sodium (Na+) salts, especially when accompanied with chloride (Cl-) anions. At the higher salt concentrations (75 and 100 mM), Na+ salts had a more pronounced inhibitory effect on M. communis seedling growth compared to potassium (K+) and magnesium (Mg2+) salts. Conversely, Mg2+ salts were more detrimental to seedling growth in B. hirsuta. Based on our results, it can be concluded that both of these species are able to tolerate a moderate level of salinity. Overall, B. hirsuta may be a promising choice for rehabilitating the soils dominated by chloride salts, while M. communis could be utilized for restoring sulfate-dominated soils.

2.
Plants (Basel) ; 12(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446964

ABSTRACT

Aerial seed banks facilitate population persistence by extending the temporal range of seed dispersal. Knowing the temporal range of germination will improve our understanding of the relationship between seed germination dynamics and aerial seed bank storage duration. We tested the effects of temperature (12/12 h of 5/10, 10/20, 20/30 and 25/35 °C) and light variation (12 h light/12 h darkness and 24 h darkness per day) on germination of Rumex obtusifolius L. seeds retained in an aerial seed bank for 0, 2, 4, 6, 8 and 10 months. Freshly harvested R. obtusifolius were non-dormant and exhibited germination rates of up to 92%. Overall, seeds of R. obtusifolius germinated reliably at all but the lowest temperature (5/10 °C). Seeds maintained high viability throughout the collection period, indicating that fluctuating weather conditions had little influence on seed germination. Thus, the species can maintain viable seeds in aerial storage for up to 10 months and contribute viable seeds to the soil seed bank year-round. This ability to maintain a renewed soil seed bank contributes to the species' strong resilience in colonizing disturbed areas and makes it a difficult weed to control.

3.
Plants (Basel) ; 12(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904052

ABSTRACT

Understanding responsible functional traits for promoting plant invasiveness could be important to aid in the development of adequate management strategies for invasive species. Seed traits play an important role in the plant life cycle by affecting dispersal ability, formation of the soil seed bank, type and level of dormancy, germination, survival and/or competitive ability. We assessed seed traits and germination strategies of nine invasive species under five temperature regimes and light/dark treatments. Our results showed a considerable level of interspecific variation in germination percentage among the tested species. Both cooler (5/10 °C) and warmer (35/40 °C) temperatures tended to inhibit germination. All study species were considered small-seeded, and seed size did not affect germination in the light. Yet, a slightly negative correlation was found between germination in the dark and seed dimensions. We classified the species into three categories according to their germination strategies: (i) risk-avoiders, mostly displaying dormant seeds with low G%; (ii) risk-takers, reaching a high G% in a broad range of temperatures; (iii) intermediate species, showing moderate G% values, which could be enhanced in specific temperature regimes. Variability in germination requirements could be important to explain species coexistence and invasion ability of plants to colonize different ecosystems.

4.
Plants (Basel) ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616174

ABSTRACT

Pyramiding of major resistance (R) genes through marker-assisted selection (MAS) is a useful way to attain durable and broad-spectrum resistance against Xanthomonas oryzae pv. oryzae pathogen, the causal agent of bacterial blight (BB) disease in rice (Oryza sativa L.). The present study was designed to pyramid four broad spectrum BB-R genes (Xa4, xa5, xa13 and Xa21) in the background of Basmati-385, an indica rice cultivar with much sought-after qualitative and quantitative grain traits. The cultivar, however, is susceptible to BB and was therefore, crossed with IRBB59 which possesses R genes xa5, xa13 and Xa21, to attain broad and durable resistance. A total of 19 F1 plants were obtained, some of which were backcrossed with Basmati-385 and large number of BC1F1 plants were obtained. In BC1F2 generation, 31 phenotypically superior genotypes having morphological features of Basmati-385, were selected and advanced up to BC1F6 population. Sequence-tagged site (STS)-based MAS was carried out and phenotypic selection was made in each successive generation. In BC1F6 population, potentially homozygous recombinant inbred lines (RILs) from each line were selected and evaluated on the bases of STS evaluation and resistance to local Xanthomonas oryzae pv. oryzae (Xoo) isolates. Line 23 was found pyramided with all four BB-R genes i.e., Xa4, xa5, xa13 and Xa21. Five genotypes including line 8, line 16, line 21, line 27 and line 28 were identified as pyramided with three R genes, Xa4, xa5 and xa13. Pathological study showed that rice lines pyramided with quadruplet or triplet R genes showed the highest level of resistance compared to doublet or singlet R genes. Thus, line 23 with quadruplet, and lines 8, 16, 21, 27, and 28 with triplet R genes, are recommended for replicated yield and resistance trials before release as new rice varieties. Further, traditional breeding coupled with MAS, is a solid way to attain highly effective BB-resistant rice lines with no yield cost.

5.
Plants (Basel) ; 10(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34579419

ABSTRACT

Pathogenesis-related (PR) proteins are part of the systemic signaling network that perceives pathogens and activates defenses in the plant. Eukaryotic and bacterial species have a 24-h 'body clock' known as the circadian rhythm. This rhythm regulates an organism's life, modulating the activity of the phytochromes (phys) and cryptochromes (crys) and the accumulation of the corresponding mRNAs, which results in the synchronization of the internal clock and works as zeitgeber molecules. Salicylic acid accumulation is also under light control and upregulates the PR genes expression, increasing plants' resistance to pathogens. Erwinia amylovora causes fire blight disease in pear trees. In this work, four bacterial transcripts (erw1-4), expressed in asymptomatic E. amylovora-infected pear plantlets, were isolated. The research aimed to understand how the circadian clock, light quality, and related photoreceptors regulate PR and erw genes expression using transgenic pear lines overexpressing PHYB and CRY1 as a model system. Plantlets were exposed to different circadian conditions, and continuous monochromic radiations (Blue, Red, and Far-Red) were provided by light-emitting diodes (LED). Results showed a circadian oscillation of PR10 gene expression, while PR1 was expressed without clear evidence of circadian regulation. Bacterial growth was regulated by monochromatic light: the growth of bacteria exposed to Far-Red did not differ from that detected in darkness; instead, it was mildly stimulated under Red, while it was significantly inhibited under Blue. In this regulatory framework, the active form of phytochrome enhances the expression of PR1 five to 15 fold. An ultradian rhythm was observed fitting the zeitgeber role played by CRY1. These results also highlight a regulating role of photoreceptors on the expression of PRs genes in non-infected and infected plantlets, which influenced the expression of erw genes. Data are discussed concerning the regulatory role of photoreceptors during photoperiod and pathogen attacks.

6.
J Food Biochem ; 45(2): e13617, 2021 02.
Article in English | MEDLINE | ID: mdl-33491200

ABSTRACT

Lipoxygenase (LOX, E.C. 1.13.11.12), among its various roles, catalyzes the degradation of polyunsaturated fatty acids and it is considered to be one of the main causes of undesirable off-flavor developments in legumes. The role of LOX in postharvest physiology is particularly significant in seeds with high values of lipoxygenase and linoleic acid levels. This research aimed to study the biochemical properties of the LOX extracted from green pea (Pisum sativum L. var. Léda, Zeusz, Zsuzsi), dry pea (Pisum sativum L. var. Hanka, Irina, Lutra), and lentil (Lens culinaris L., var. Pinklevi, Rézi, Castelluccio), using linoleic acid as a substrate. The raw extracts showed different catalytic properties, with dry pea (var. Irina) that expressed the highest LOX activity, while lentil (var. Pinklevi) expressed the lowest activity. To complete the biochemical characterization of the crude LOX extracts, their optimal pH and temperature were also examined. The highest value of lipoxygenase activity in the pH range 6-7 was measured in all legumes. The optimal temperature for all extracts fell within the range of 30-60°C given the nutritional importance of legumes. This study will serve as a basis for further detailed investigation of the legumes LOX activity and its roles in food products related to legumes. PRACTICAL APPLICATIONS: This study investigated the biochemical properties of lipoxygenase (LOX) extracted from different varieties of lentil and pea, the two important leguminous crops serving as the main protein source for the population of humans worldwide. The biochemical properties of LOX extracted from legumes showed large differences in terms of kinetic properties. The results of this study revealed that the use of lipoxygenase can be a suitable index for managing stabilization techniques of lentil and pea, in order to inhibit the lipid oxidation in grain legume without compromising its nutritional value.


Subject(s)
Fabaceae , Lens Plant , Humans , Lipoxygenase , Pisum sativum , Seeds
7.
Food Chem ; 297: 124884, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31253259

ABSTRACT

The effect of cropping system (conventional vs. organic) and soil tillage (conventional vs. reduced tillage) on the health potential of durum wheat grain as well as on semolina and pasta quality traits was investigated in a long-term field experiment. Total antioxidant capacity, total arabinoxylans, alkylresorcinols, yellow pigments and total phenolics, which were assessed in kernels, revealed differences between the two cultivation systems only in 2011, whereas in the 2010 rainy season, cropping management did not influence these compounds. Proteins and W index were higher in the conventional system, except for the exceptionally rainy years. In contrast, the quality of cooked spaghetti was comparable in both management systems. Soil tillage differently affected bioactive compounds but had no impact on semolina and pasta quality. Overall, climatic conditions was the major factor affecting the quality of durum wheat. Our results indicate that an organic system does not represent a constraint to obtaining durum wheat grain with healthy potential relative to conventional wheat.


Subject(s)
Flour/analysis , Food Analysis/methods , Triticum/metabolism , Antioxidants/analysis , Cooking , Discriminant Analysis , Glutens/analysis , Phenols/analysis , Seasons , Soil/chemistry , Xylans/analysis
8.
Front Plant Sci ; 10: 546, 2019.
Article in English | MEDLINE | ID: mdl-31130972

ABSTRACT

Current and predicted climate changes scenarios require crops with an improved adaptability to mutable environmental features, such as, hypoxia for the root system. In order to overcome the reduction of oxygen, plants activate coping mechanisms and strategies. Prunus spp. are hypoxia-sensitive woody species and although many information has been gathered over the last decades, many physiological mechanisms remain unclear. To verify whether anoxic plant responses are also regulated by photoperiod, plants of Mr.S.2/5-WT plum, and its variant genotypes S.4 tolerant (plus) and S.1 sensitive (minus) to flooding, were grown in a greenhouse and were submitted to natural photoperiod (NP) and to constant photoperiod (CP) from mid-July until the first 10 days of October. From mid-September plants from each genotype, grown under the two photoperiods, were divided into two groups, and one of them underwent long-term flooding. Gas exchange parameters, energetic and biochemical activities, leaf chlorophyll contents, and stress symptoms were measured at different times, whereas soluble sugars were quantified in leaves and roots 14 days after flooding, when stress symptoms in WT and S.1 became prominent. Seasonal changes in the photoperiod played a role in the adaptability to anoxia, although flooding stress response differed among the three genotypes. Anoxia affected leaf gas exchange and S.4 flooded-leaves retained higher ACO2 under conditions of NP and CP. Leaf soluble sugar concentration differed among genotypes. Regardless the photoperiod, S.4 anoxic-leaf sugar concentration was the lowest, except for sorbitol. S.4 anoxic-roots under CP accumulated the highest levels of sucrose and sorbitol. Influences of the photoperiod were observed in WT and S.1 anoxic-leaves, whereas S.1 anoxic roots accumulated the lowest concentration of sugars, regardless of photoperiod. Leaf and root respiratory activity in flooded-plants was highest in S.4, and ADH activity increased in all flooded plants under CP but the highest activity was observed only in S.1 under NP during flooding. Results are consistent with the hypothesis that the S.4 genotype has a plastic adaptability to flooding stress, escaping from the photoperiod regulatory cross-talk system, and can better cope with the new scenarios generated by climate changes.

9.
Chemosphere ; 211: 352-359, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30077931

ABSTRACT

The research studied the effects of organic vs. conventional management of soil quality and tomato yield quality, cultivated in a geogenic arsenic contaminated soil. The chemical and biochemical properties were analyzed to evaluate soil quality, arsenic mobility and its phyto-availability, as well as arsenic accumulation in the tomato plant tissues and if tomatoes cultivated in arsenic rich soil represents a risk for human health. A general improvement of tomato growth and soil quality was observed in the organic management, where soil organic carbon increased from 1.24 to 1.48% and total nitrogen content. The arsenic content of the soil in the organic management increased from 57.0 to 65.3 mg kg-1, probably due to a greater content of organic matter which permitted the soil to retain the arsenic naturally present in irrigation water. An increase of bioavailable arsenic was observed in the conventional management compared to the organic one (7.05 vs 6.18 mg kg-1). The bioavailable form of metalloid may affect soil microbial community structure assessed using El-FAME analysis. The increase of the total arsenic concentration in the organic management did not represent a stress factor for soil microbial biomass carbon (Cmic), which was higher in the organic management than in the conventional one (267 vs. 132 µg Cmic g-1). Even if the organic management caused an increase of total arsenic concentration in the soil due to the enhanced organic matter content, retaining arsenic from irrigation water, this management mitigates the arsenic uptake by tomato plants reducing the mobility of the metalloid.


Subject(s)
Agriculture/methods , Arsenic/analysis , Soil Pollutants/analysis , Soil/chemistry , Solanum lycopersicum/metabolism , Arsenic/metabolism , Biological Availability , Humans , Solanum lycopersicum/growth & development , Soil Pollutants/metabolism
10.
J Environ Manage ; 98: 119-26, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22265812

ABSTRACT

Over the past century farming activity has intensified worldwide, characterized by an increasing dependence on external inputs and on land conversion. Although the intensification of agriculture has increased productivity, the sustainability of agroecosystems has also been compromised. The objective of this study is to build multivariate relationships between farm structural characteristics and farm performance to highlight the relative costs and benefits of four main farming systems in Central Italy: organic, conventional, mixed and non-mixed farms. Results show that the relationship between cropping diversity and agroecological sustainability is associated to a mixed versus non-mixed farm management dichotomy, not to organic or conventional farming practices. The presence of livestock appears to have played an important role as an economic lever for diversifying the farm cropping system.


Subject(s)
Conservation of Natural Resources , Organic Agriculture , Ecosystem , Italy , Multivariate Analysis , Organic Agriculture/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...