Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 107(14): 144801, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22107200

ABSTRACT

Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract-and-destroy" mode. We determined a coherence length of 17 µm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

2.
Phys Rev Lett ; 90(7): 074801, 2003 Feb 21.
Article in English | MEDLINE | ID: mdl-12633233

ABSTRACT

A measurement of the horizontal coherence function of 7.9 keV radiation from an undulator beam line at the Advanced Photon Source is reported. X-ray diffraction from a phase-shifting mask was used, and the coherence function was measured as a function of the width of beam-conditioning slits in the beam line. The coherence distribution is found to be best described by a Lorentzian function.

3.
Phys Rev Lett ; 87(14): 148101, 2001 Oct 01.
Article in English | MEDLINE | ID: mdl-11580675

ABSTRACT

Conventional x-ray diffraction topography is currently used to map defects in the bulk of protein crystals, but the lack of sufficient contrast is frequently a limiting factor. We experimentally demonstrate that this barrier can be circumvented using a method that combines phase sensitive and diffraction imaging principles. Details of defects revealed in tetragonal lysozyme and cubic ferritin crystals are presented and discussed. The approach enabling the detection of the phase changes of diffracted x rays should prove to be useful in the study of defect structures in a broad range of biological macromolecular crystals.


Subject(s)
Ferritins/chemistry , Muramidase/chemistry , Animals , Chickens , Crystallization , Egg Proteins/chemistry , Female , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...