Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 107(8): 2225-2235, 2018 08.
Article in English | MEDLINE | ID: mdl-29608887

ABSTRACT

Four P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) substrates with human cerebrospinal fluid (CSF) concentrations and preclinical neuropharmacokinetics were used to assess in vitro-in vivo extrapolation of brain penetration in preclinical species and the ability to predict human brain penetration. Unbound brain (Cb,u), unbound plasma (Cp,u), and CSF compound concentrations (CCSF) were measured in rats and nonhuman primates (NHPs), and the unbound partition coefficients (Cb,u/Cp,u and CCSF/Cp,u) were used to assess brain penetration. The results indicated that for P-gp and BCRP dual substrates, brain penetration was severally impaired in all species. In comparison, for P-gp substrates that are weak or non-BCRP substrates, improved brain penetration was observed in NHPs and humans than in rats. Overall, NHP appears to be more predictive of human brain penetration for P-gp substrates with weak or no interaction with BCRP than rat. Although CCSF does not quantitatively correspond to Cb,u for efflux transporter substrates, it is mostly within 3-fold higher of Cb,u in rat and NHP, suggesting that CCSF can be used as a surrogate for Cb,u. Taken together, a holistic approach including both in vitro transporter and in vivo neuropharmacokinetics data enables a better estimation of human brain penetration of P-gp/BCRP substrates.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Brain/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Pharmacokinetics , Animals , Azabicyclo Compounds/pharmacokinetics , Biological Transport , Blood-Brain Barrier/metabolism , Dogs , Drug Discovery , Humans , Imatinib Mesylate/pharmacokinetics , Imidazoles/pharmacokinetics , Madin Darby Canine Kidney Cells , Male , Models, Animal , Protein Kinase Inhibitors/pharmacokinetics , Rats, Sprague-Dawley
2.
J Med Chem ; 60(18): 7764-7780, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28817277

ABSTRACT

We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.


Subject(s)
Allosteric Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Pyridines/pharmacology , Pyridines/pharmacokinetics , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Female , HEK293 Cells , Heterocyclic Compounds, 3-Ring/adverse effects , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Male , Molecular Docking Simulation , Pyridines/adverse effects , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
Neurology ; 82(17): 1536-42, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24696507

ABSTRACT

OBJECTIVE: To examine safety, tolerability, and efficacy of PF-04494700, an inhibitor of the receptor for advanced glycation end products (RAGE), in mild to moderate Alzheimer disease (AD). METHODS: Double-blind, placebo-controlled trial at 40 academic centers (United States). Subjects with AD and Mini-Mental State Examination score 14-26 were randomized to PF-04494700 60 mg/day × 6 days, then 20 mg daily (high dose); 15 mg/day × 6 days, then 5 mg daily (low dose); or placebo, for 18 months. Clinical and laboratory measures were used to evaluate safety and tolerability. The primary efficacy measure was the Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog). Secondary measures assessed clinical stage, function, behavior, MRI, and CSF biomarkers. RESULTS: A total of 399 subjects were randomized. In a prespecified interim analysis, when 50% of subjects had completed the 6-month visit, the high dose was associated with confusion, falls, and greater ADAS-cog decline and was discontinued. A second prespecified analysis compared low-dose and placebo groups for futility and safety approximately 12 months after all subjects were randomized. This analysis met criteria for futility, and treatment was discontinued. There were no safety concerns in the low-dose group. Analyses including post-futility data showed decreased decline on the ADAS-cog in the low-dose group at month 18. Other clinical and biomarker measures showed no differences between low-dose treatment and placebo. CONCLUSIONS: PF-04494700 at 20 mg/d was associated with increased adverse events and cognitive decline. At 5 mg/d, PF-04494700 had a good safety profile. A potential benefit for this low dose on the ADAS-cog is not conclusive, because of high dropout and discontinuation rates subsequent to the interim analyses. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in patients with AD high-dose PF-04494700 increased cognitive decline at 6 months and Class IV evidence that low-dose PF-04494700 slowed cognitive decline at 18 months.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Antipsychotic Agents/therapeutic use , Glycation End Products, Advanced/antagonists & inhibitors , Glycation End Products, Advanced/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/complications , Cognition Disorders/blood , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Follow-Up Studies , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Psychiatric Status Rating Scales , Time Factors , United States
4.
J Pharm Sci ; 103(5): 1557-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24633923

ABSTRACT

In rats, oxycodone, diphenhydramine, and [4-chloro-5-fluoro-2-(3-methoxy-2-methyl-phenoxy)-benzyl]-methylamine (CE-157119) undergo net active influx at the blood-brain barrier (BBB) based on significantly greater interstitial fluid compound concentrations (CISF ) than unbound plasma compound concentrations (Cp,u ). Oxycodone and diphenhydramine have CISF :Cp,u of 3.0 and 5.5, respectively, while CE-157119 has an unbound brain compound concentration (Cb,u ):Cp,u of 3.90; Cb,u is a high-confidence CISF surrogate. However, only CE-157119 has published dog and nonhuman primate (nhp) neuropharmacokinetics, which show similar Cb,u :Cp,u (4.61 and 2.04, respectively) as rats. Thus, diphenhydramine underwent identical interspecies neuropharmacokinetics studies to determine if its net active BBB influx in rats replicated in dogs and/or nhp. The single-dose-derived rat Cb,u :Cp,u (3.90) was consistent with prior steady-state-derived CISF :Cp,u and similar to those in dogs (4.88) and nhp (4.51-5.00). All large animal interneurocompartmental ratios were ≤1.8-fold different than their rat values, implying that diphenhydramine has constant and substantial Cb,u -favoring disequilibria in these mammals. Accordingly, the applied Cb,u -forecasting methodology accurately predicted [estimated mean (95% confidence interval) of 0.84 (0.68, 1.05)] Cb,u from each measured Cp,u in large animals. The collective datasets suggest these Cb,u -preferring asymmetries are mediated by a species-independent BBB active uptake system whose identification, full characterization, and structure-activity relationships should be prioritized for potential exploitation.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Diphenhydramine/pharmacokinetics , Animals , Biological Transport/physiology , Dogs , Extracellular Fluid/metabolism , Female , Macaca fascicularis , Male , Microdialysis/methods , Oxycodone/pharmacokinetics , Rats , Rats, Sprague-Dawley
5.
J Med Chem ; 57(3): 861-77, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24392688

ABSTRACT

A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.


Subject(s)
Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Receptor, Metabotropic Glutamate 5/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Administration, Oral , Allosteric Regulation , Animals , Antiparkinson Agents/adverse effects , Biological Availability , Cell Membrane Permeability , Dogs , Dyskinesia, Drug-Induced/drug therapy , HEK293 Cells , Humans , Hypersensitivity, Delayed/chemically induced , Levodopa/adverse effects , Macaca fascicularis , Madin Darby Canine Kidney Cells , Male , Microsomes, Liver/metabolism , Models, Molecular , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/physiopathology , Pyrazines/pharmacology , Pyrazines/toxicity , Pyrazoles/pharmacology , Pyrazoles/toxicity , Radioligand Assay , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
6.
Drug Metab Dispos ; 40(11): 2162-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899853

ABSTRACT

Previous publications suggest that interstitial fluid compound concentrations (C(ISF)) best determine quantitative neurotherapeutic pharmacology relationships, although confirming large animal C(ISF) remains elusive. Therefore, this work primarily evaluated using respective acute dose, rat-derived unbound brain compound concentration-to-unbound plasma compound concentration ratios (C(b,u)/C(p,u)) to project accurately dog and nonhuman primate (nhp) C(b,u), a C(ISF) surrogate, from measured C(p,u) for the highly permeable non-P-glycoprotein substrates N-{(3R,4S)-3-[4-(5-cyano-2-thienyl)phenyl]tetrahydro-2H-pyran-4-yl}propane-2-sulfonamide (PF-4778574) and [4-chloro-5-fluoro-2-(3-methoxy-2-methyl-phenoxy)-benzyl]-methylamine (CE-157119) and the P-glycoprotein substrates risperidone and 9-hydroxyrisperidone. First, in rats, it was determined for eight of nine commercial compounds that their single-dose-derived C(b,u)/C(p,u) were ≤2.5-fold different from their steady-state values; for all nine drugs, their C(b,u)/C(p,u) were ≤2.5-fold different from their steady-state C(ISF)/C(p,u) (Drug Metab Dispos 37:787-793, 2009). Subsequently, PF-4778574, CE-157119 and risperidone underwent rat, dog, and nhp neuropharmacokinetics studies. In large animals at each measured C(p,u), the methodology adequately predicted [estimated mean (95% confidence interval) of 1.02 (0.80, 1.29)] the observed C(b,u) for PF-4778574 and CE-157119 but underpredicted [0.17 (0.12, 0.22)] C(b,u) for risperidone and 9-hydroxyrisperidone. The data imply that forecasting higher species C(b,u) from a measured C(p,u) and rat acute dose-determined C(b,u):C(p,u) is of high confidence for nonefflux transporter substrates that show net passive diffusion (PF-4778574) or net active influx (CE-157119) at the blood-brain barrier in rats. However, this methodology appears ineffective for correctly predicting large animal C(b,u) for P-glycoprotein substrates (risperidone and 9-hydroxyrisperidone) because of their apparently much greater C(p,u)-favoring C(b,u):C(p,u) asymmetry in rats versus dogs or nhp. Instead, for such P-glycoprotein substrates, large animal-specific cerebrospinal fluid compound concentrations (C(CSF)) seemingly best represent C(b,u).


Subject(s)
Brain/metabolism , Isoxazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Risperidone/pharmacokinetics , Thiophenes/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biological Transport , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain Chemistry , Dogs , Male , Paliperidone Palmitate , Primates , Rats , Rats, Sprague-Dawley
7.
Biometrics ; 58(2): 403-12, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12071414

ABSTRACT

Preclinical animal carcinogenicity studies are usually concerned with testing the statistical significance of a dose-response relationship. When the response consists of a rare event such as the development of a certain type of tumor, exact statistical methods are often employed. The exact randomization trend test based on the multivariate hypergeometric distribution is less powerful in the presence of treatment-related risks other than the specified response. Particularly, the loss of power becomes more pronounced when competing risks cause progressively higher mortality rates with increasing dose, which is usual in practice. An age-adjusted form of the randomization test is proposed to adjust for this effect. Permutational distribution for Peto's cause-of-death (COD) test is also explored and compared with its asymptotic counterpart by simulation. The use of COD information has been a controversial issue due to the subjectivity in the pathologists' determinations as well as for economic reasons. The proposed age-adjusted exact test does not require COD, and it is shown to compare favorably to the COD tests via an extensive Monte Carlo simulation. Applications of the methods to two real data sets are included.


Subject(s)
Biometry/methods , Carcinogenicity Tests/statistics & numerical data , Age Factors , Animals , Data Interpretation, Statistical , Neoplasms, Experimental/chemically induced , Toxicology/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...