Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(24): 34876-34887, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878667

ABSTRACT

We have demonstrated a paper-like diffractive film in which nano-structured liquid crystal droplets are embedded in elastomeric monomer incorporated polymer matrix by polymerization induced phase-separation. The film with voltage-tunable phase grating exhibits an optically isotropic phase with high transparency and an effective chromatic diffraction for an incident white light with sub-millisecond switching time. In addition, the proposed diffractive film is exhibiting excellent chemical stability against organic and inorganic solvents. In this paper, the diffraction properties of test films depending on incident polarization direction, wavelength, and spatial dispersion are characterized. Easy processing and optically isotropic nature of the film imparts potential applications to flexible electro-optic devices that can be widely implemented in wearable photonics.

2.
Opt Express ; 26(21): 27368-27380, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30469807

ABSTRACT

Feeble light leakage in a dark state of conventional optically isotropic liquid crystal (OILC) device has a strong impact on the contrast ratio of a liquid crystal (LC) device. In order to overcome such intrinsic problem, we proposed an OILC in which the LC directors inside droplets are twisted by introducing chirality. The light leakage is effectively suppressed by matching the refractive indices between LC and polymer matrix; consequently, we achieved a high contrast ratio, 1:1401. Interestingly, the on-state transmittance is enhanced by ~49% compared to conventional OILC. The response time was also improved and the hysteresis was suppressed to be negligible. The improved electro-optic performances of the proposed OILC device would give diverse applications in upcoming flexible display and various photonic devices.

3.
Opt Express ; 25(20): 24033-24043, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041351

ABSTRACT

We have demonstrated an electrically tunable less polarization sensitive and fast response nanostructured polymer dispersed liquid crystal (nano-PDLC) diffraction grating. Fabricated nano-PDLC is optically transparent in visible wavelength regime. The optical isotropic nature was increased by minimizing the liquid crystal droplet size below visible wavelength thereby eliminated scattering. Diffraction properties of in-plane switching (IPS) and fringe-field switching (FFS) cells were measured and compared with one another up to four orders. We have obtained a pore-type polymer network constructed by highly interlinked polymer beads at which the response time is improved by strong interaction of liquid crystal molecules with polymer beads at interface. The diffraction pattern obtained by transparent nano-PDLC film has several interesting properties such as less polarization dependence and fast response. This device can be used as transparent tunable diffractor along with other photonic application.

4.
Opt Express ; 25(17): 19807-19821, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041668

ABSTRACT

Polymer-dispersed liquid crystals (PDLCs) modulate the amplitude and optical phase of light. The optical phase modulation of PDLC can be dissected into two parts: Kerr phase and orientational phase according to the electro-optical (EO) response. We investigated the origins of the Kerr and orientational phases in PDLCs and their connection with the two-step EO response. The Kerr phase is attributed to LC orientation in the center of LC droplets. The orientational phase results from orientation of LC molecules near LC-polymer interfaces. Both phases can be adjusted by varying the droplet size. The two-step EO response in small droplets (<333 nm) is related to the Kerr and orientational phases, and possibly to rotation of point defects. A modified PDLC model considering the Kerr and orientational phases is proposed. Our findings suggest the possibility of versatile photonic devices using pure optical phase modulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...