Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Neurobiol Aging ; 137: 8-18, 2024 May.
Article in English | MEDLINE | ID: mdl-38394723

ABSTRACT

Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.


Subject(s)
Odorants , Olfactory Perception , Humans , Mice , Animals , Aged , Smell/physiology , Olfactory Perception/physiology , Quality of Life , Olfactory Bulb/physiology
2.
Neurobiol Aging ; 136: 133-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364691

ABSTRACT

Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.


Subject(s)
Brain , Smell , Mice , Animals , Smell/physiology , Cognition , Norepinephrine/physiology , Locus Coeruleus/physiology , Olfactory Bulb/physiology
3.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314795

ABSTRACT

It is widely accepted that olfactory stimulation elicits motor behaviors, such as approaching pleasant odorants and avoiding unpleasant ones, in animals and humans. Recently, studies using electroencephalography and transcranial magnetic stimulation (TMS) have demonstrated a strong link between processing in the olfactory system and activity in the motor cortex in humans. To better understand the interactions between the olfactory and the motor systems and to overcome some of the previous methodological limitations, we developed a new method combining an olfactometer that synchronizes the random order presentation of odorants with different hedonic values and the TMS (single- and dual-coil) triggering with nasal breathing phases. This method allows probing the modulations of corticospinal excitability and effective ipsilateral connectivity between the dorsolateral prefrontal cortex and the primary motor cortex that could occur during pleasant and unpleasant odor perception. The application of this method will allow for objectively discriminating the pleasantness value of an odorant in a given participant, indicating the biological impact of the odorant on brain effective connectivity and excitability. In addition, this could pave the way for clinical investigations in patients with neurological or neuropsychiatric disorders who may exhibit odor hedonic alterations and maladaptive approach-avoidance behaviors.


Subject(s)
Brain , Odorants , Animals , Humans , Brain/physiology , Smell/physiology , Emotions/physiology , Transcranial Magnetic Stimulation
4.
Front Neurosci ; 17: 1224941, 2023.
Article in English | MEDLINE | ID: mdl-37600017

ABSTRACT

Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.

5.
Neurobiol Aging ; 114: 73-83, 2022 06.
Article in English | MEDLINE | ID: mdl-35413485

ABSTRACT

Normal brain aging is associated with deficits in cognitive and sensory processes, due to subtle impairment of synaptic contacts and plasticity. Impairment may be discrete in basal conditions but is revealed when cerebral plasticity is involved, such as in learning contexts. We used olfactory perceptual learning, a non-associative form of learning in which discrimination between perceptually similar odorants is improved following exposure to these odorants, to better understand the cellular bases of olfactory aging in mice. We first evaluated learning ability and memory retention in 2-, 6-, 12-, and 18-month-old mice, and identified 12 months as a pivotal age when memory retention subtly declines before learning becomes totally impaired at later ages. We then showed that learning-induced structural plasticity of adult-born granule cells is specific to cells responding to the learned odorants in the olfactory bulb of young adult mice and loses its specificity in 12-month-old mice, in parallel to memory impairment. Taken together, our data refine our understanding of aging-related impairment of plasticity mechanisms in the olfactory bulb and consequent induction of olfactory learning and memory deficits.


Subject(s)
Neurogenesis , Olfactory Bulb , Aging/physiology , Animals , Memory Disorders , Mice , Neurogenesis/physiology , Neuronal Plasticity/physiology , Odorants , Olfactory Bulb/physiology , Smell/physiology
6.
Brain Sci ; 12(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35203890

ABSTRACT

The search for a biological marker predicting the future failure or success of electroconvulsive therapy (ECT) remains highly challenging for patients with treatment-resistant depression. Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF), a protein known to be involved in brain plasticity mechanisms, can play a key role in both the clinical efficacy of ECT and the pathophysiology of depressive disorders. We hypothesized that mature BDNF (mBDNF), an isoform of BDNF involved in the neural plasticity and survival of neural networks, might be a good candidate for predicting the efficacy of ECT. Total BDNF (tBDNF) and mBDNF levels were measured in 23 patients with severe treatment-resistant depression before (baseline) they received a course of ECT. More precisely, tBDNF and mBDNF measured before ECT were compared between patients who achieved the criteria of remission after the ECT course (remitters, n = 7) and those who did not (non-remitters, n = 16). We found that at baseline, future remitters displayed significantly higher mBDNF levels than future non-remitters (p = 0.04). No differences were observed regarding tBDNF levels at baseline. The multiple logistic regression model controlled for age and sex revealed that having a higher baseline mBDNF level was significantly associated with future remission after ECT sessions (odd ratio = 1.38; 95% confidence interval = 1.07-2.02, p = 0.04). Despite the limitations of the study, current findings provide additional elements regarding the major role of BDNF and especially the mBDNF isoform in the clinical response to ECT in major depression.

7.
J Neurosci Methods ; 366: 109422, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34826503

ABSTRACT

BACKGROUND: When you smell an odorant, your first reaction will certainly be either I like it or I dislike it. This primary reaction is a reflection of what is called the "hedonic value" of the odor. Very often, this hedonic value dominates the olfactory percept, more than olfactory identification or intensity. This component of olfactory perception is of primary importance for guiding behavior: avoiding danger (the smell of smoke, gas, etc.), consuming food, or seduction. Olfactory hedonics can be assessed using a large number of methods in humans, including psychophysical measures, autonomic responses, measurement of facial expressions or peripheral nervous activity. All of these techniques have their limitations: subjectivity, invasiveness, need for expertise, etc. A NEW METHOD: The olfactory system is closely linked to the reward system, the role of which is to mediate motivated behavior. In this context, we propose that the capacity odorants have of recruiting the reward system and thus inducing motivated behavior can be used to identify new behavioral parameters to assess odor hedonic value in humans. RESULTS: We recorded freely moving human participants exploring odors emanating from flasks, and showed that five parameters linked to motivated behavior were closely linked to odor hedonics: speed of approach to the nose and withdrawal of the flask containing the odorant, distance between flask and nose, number of samplings, and withdrawal distance (maximal distance between nose and flask after odor sampling). CONCLUSIONS: We highlighted new non-verbal and non-invasive parameters to evaluate olfactory hedonics in humans based on the assessment of odor-motivated behavior.


Subject(s)
Odorants , Olfactory Perception , Autonomic Nervous System , Humans , Smell/physiology
8.
Chem Senses ; 462021 01 01.
Article in English | MEDLINE | ID: mdl-34618883

ABSTRACT

Links between olfactory sensory function and effect have been well established. A robust literature exists in both humans and animals showing that disrupting olfaction sensory function can elicit disordered mood state, including serve as a model of depression. Despite this, considerably less is known regarding the directionality and neural basis of this relationship, e.g. whether disruptions in sensory function precede and contribute to altered mood or if altered mood state precipitates changes in olfactory perception. Further, the neural basis of altered olfactory function in depression remains unclear. In conjunction with clinical studies, animal models represent a valuable tool to understand the relationship between altered mood and olfactory sensory function. Here, we review the relevant literature assessing olfactory performance in depression in humans and in rodent models of depressive-like behavioral states. Rodents allow for detailed characterization of alterations in olfactory perception, manipulation of experiential events that elicit depressive-like phenotypes, and allow for interrogation of potential predictive markers of disease and the cellular basis of olfactory impairments associated with depressive-like phenotypes. We synthesize these findings to identify paths forward to investigate and understand the complex interplay between depression and olfactory sensory function.


Subject(s)
Olfaction Disorders , Olfactory Perception , Animals , Depression , Smell
9.
Brain Sci ; 11(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069556

ABSTRACT

Although transcranial direct current stimulation (tDCS) shows promise as a treatment for auditory verbal hallucinations in patients with schizophrenia, mechanisms through which tDCS may induce beneficial effects remain unclear. Evidence points to the involvement of neuronal plasticity mechanisms that are underpinned, amongst others, by brain-derived neurotrophic factor (BDNF) in its two main forms: pro and mature peptides. Here, we aimed to investigate whether tDCS modulates neural plasticity by measuring the acute effects of tDCS on peripheral mature BDNF levels in patients with schizophrenia. Blood samples were collected in 24 patients with schizophrenia before and after they received a single session of either active (20 min, 2 mA, n = 13) or sham (n = 11) frontotemporal tDCS with the anode over the left prefrontal cortex and the cathode over the left temporoparietal junction. We compared the tDCS-induced changes in serum mature BDNF (mBDNF) levels adjusted for baseline values between the two groups. The results showed that active tDCS was associated with a significantly larger decrease in mBDNF levels (mean -20% ± standard deviation 14) than sham tDCS (-8% ± 21) (F = 5.387; p = 0.030; η2 = 0.205). Thus, mature BDNF may be involved in the beneficial effects of frontotemporal tDCS observed in patients with schizophrenia.

10.
Curr Biol ; 31(8): 1592-1605.e9, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33607032

ABSTRACT

Pleasant odorants are represented in the posterior olfactory bulb (pOB) in mice. How does this hedonic information generate odor-motivated behaviors? Using optogenetics, we report here that stimulating the representation of pleasant odorants in a sensory structure, the pOB, can be rewarding, self-motivating, and is accompanied by ventral tegmental area activation. To explore the underlying neural circuitry downstream of the olfactory bulb (OB), we use 3D high-resolution imaging and optogenetics and determine that the pOB preferentially projects to the olfactory tubercle, whose increased activity is related to odorant attraction. We further show that attractive odorants act as reinforcers in dopamine-dependent place preference learning. Finally, we extend those findings to humans, who exhibit place preference learning and an increase BOLD signal in the olfactory tubercle in response to attractive odorants. Thus, strong and persistent attraction induced by some odorants is due to a direct gateway from the pOB to the reward system.


Subject(s)
Emotions , Odorants , Olfactory Bulb/physiology , Olfactory Perception , Reward , Animals , Male , Mice , Mice, Inbred C57BL , Motivation , Olfactory Bulb/cytology , Optogenetics , Smell
11.
Cell Tissue Res ; 383(1): 485-493, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33515292

ABSTRACT

Whether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute to the coding of innate and learned odorant hedonics in addition to the odorant's physicochemical properties.


Subject(s)
Odorants , Olfactory Bulb/physiology , Animals , Vertebrates
12.
J Neurosci ; 40(48): 9260-9271, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33097638

ABSTRACT

Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.


Subject(s)
Memory/physiology , Norepinephrine/physiology , Olfactory Bulb/physiology , Smell/physiology , Animals , Computer Simulation , Male , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL , Neurons/physiology , Norepinephrine/metabolism , Odorants , Olfactory Bulb/metabolism , Olfactory Pathways/physiology , Reversal Learning/physiology , Reward , Synapses/physiology , Synaptic Transmission
14.
Cereb Cortex ; 30(2): 534-549, 2020 03 21.
Article in English | MEDLINE | ID: mdl-31216001

ABSTRACT

Olfactory perceptual learning is defined as an improvement in the discrimination of perceptually close odorants after passive exposure to these odorants. In mice, simple olfactory perceptual learning involving the discrimination of two odorants depends on an increased number of adult-born neurons in the olfactory bulb, which refines the bulbar output. However, the olfactory environment is complex, raising the question of the adjustment of the bulbar network to multiple discrimination challenges. Perceptual learning of 1 to 6 pairs of similar odorants led to discrimination of all learned odor pairs. Increasing complexity did not increase adult-born neuron survival but enhanced the number of adult-born neurons responding to learned odorants and their spine density. Moreover, only complex learning induced morphological changes in neurons of the granule cell layer born during the first day of life (P0). Selective optogenetic inactivation of either population confirmed functional involvement of adult-born neurons regardless of the enrichment complexity, while preexisting neurons were required for complex discrimination only.


Subject(s)
Discrimination Learning/physiology , Neurogenesis , Neurons/physiology , Olfactory Perception/physiology , Animals , Male , Mice, Inbred C57BL , Neurons/cytology , Odorants , Olfactory Bulb/cytology , Optogenetics
15.
Nat Commun ; 10(1): 5609, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811134

ABSTRACT

Adult olfactory neurogenesis provides waves of new neurons involved in memory encoding. However, how the olfactory bulb deals with neuronal renewal to ensure the persistence of pertinent memories and the flexibility to integrate new events remains unanswered. To address this issue, mice performed two successive olfactory discrimination learning tasks with varying times between tasks. We show that with a short time between tasks, adult-born neurons supporting the first learning task appear to be highly sensitive to interference. Furthermore, targeting these neurons using selective light-induced inhibition altered memory of this first task without affecting that of the second, suggesting that neurons in their critical period of integration may only support one memory trace. A longer period between the two tasks allowed for an increased resilience to interference. Hence, newly formed adult-born neurons regulate the transience or persistence of a memory as a function of information relevance and retrograde interference.


Subject(s)
Memory/physiology , Neurons/physiology , Olfactory Bulb/physiology , Smell/physiology , Animals , Behavior, Animal , Bromodeoxyuridine/pharmacology , Cell Death , Discrimination Learning/physiology , Learning , Male , Mice , Mice, Inbred C57BL , Neurogenesis/physiology , Neurons/drug effects , Odorants , Time Factors
16.
iScience ; 22: 544-556, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31855767

ABSTRACT

Learning to perceptually discriminate between chemical signals in the environment (olfactory perceptual learning [OPL]) is critical for survival. Multiple mechanisms have been implicated in OPL, including modulation of neurogenesis and manipulation of cholinergic activity. However, whether these represent distinct processes regulating OPL or if cholinergic effects on OPL depend upon neurogenesis has remained an unresolved question. Using a combination of pharmacological and optogenetic approaches, cholinergic activity was shown to be both necessary and sufficient to drive OPL, and this process was dependent on the presence of newly born cells in the olfactory bulb (OB). This study is the first to directly demonstrate that cholinergic effects on OPL require adult OB neurogenesis.

17.
Neurobiol Aging ; 82: 18-29, 2019 10.
Article in English | MEDLINE | ID: mdl-31377537

ABSTRACT

Anxiety disorders represent 1 of the most common classes of psychiatric disorders. In the aging population and for patients with age-related pathology, the percentage of people suffering of anxiety is significantly elevated. Furthermore, anxiety carries with it an increased risk for a variety of age-related medical conditions, including cardiovascular disease, stroke, cognitive decline, and increased severity of motor symptoms in Parkinson's disease. A variety of anxiolytic compounds are available but often carry with them disturbing side effects that impact quality of life. Among nonmedicinal approaches to reducing anxiety, odor diffusion and aromatherapy are the most popular. In this review, we highlight the emerging perspective that the use of odorants may reduce anxiety symptoms or at least potentiate the effect of other anxiolytic approaches and may serve as an alternative form of therapy to deal with anxiety symptoms. Such approaches may be particularly beneficial in aging populations with elevated risk for these disorders. We also discuss potential neural mechanisms underlying the anxiolytic effects of odorants based on work in animal models.


Subject(s)
Aging/drug effects , Anti-Anxiety Agents/administration & dosage , Anxiety/drug therapy , Aromatherapy/methods , Brain/drug effects , Odorants , Aging/metabolism , Aging/pathology , Animals , Anxiety/metabolism , Anxiety/psychology , Aromatherapy/trends , Brain/metabolism , Brain/pathology , Humans
18.
J Neurosci Methods ; 304: 136-145, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29684463

ABSTRACT

BACKGROUND: Cellular imagery using histology sections is one of the most common techniques used in Neuroscience. However, this inescapable technique has severe limitations due to the need to delineate regions of interest on each brain, which is time consuming and variable across experimenters. NEW METHOD: We developed algorithms based on a vectors field elastic registration allowing fast, automatic realignment of experimental brain sections and associated labeling in a brain atlas with high accuracy and in a streamlined way. Thereby, brain areas of interest can be finely identified without outlining them and different experimental groups can be easily analyzed using conventional tools. This method directly readjusts labeling in the brain atlas without any intermediate manipulation of images. RESULTS: We mapped the expression of cFos, in the mouse brain (C57Bl/6J) after olfactory stimulation or a non-stimulated control condition and found an increased density of cFos-positive cells in the primary olfactory cortex but not in non-olfactory areas of the odor-stimulated animals compared to the controls. COMPARISON WITH EXISTING METHOD(S): Existing methods of matching are based on image registration which often requires expensive material (two-photon tomography mapping or imaging with iDISCO) or are less accurate since they are based on mutual information contained in the images. Our new method is non-imaged based and relies only on the positions of detected labeling and the external contours of sections. CONCLUSIONS: We thus provide a new method that permits automated matching of histology sections of experimental brains with a brain reference atlas.


Subject(s)
Algorithms , Brain Mapping , Image Processing, Computer-Assisted , Neurons/metabolism , Olfactory Cortex/cytology , Tomography, X-Ray Computed , Animals , Cell Count , Mice , Mice, Inbred C57BL , Odorants , Olfactory Cortex/diagnostic imaging , Proto-Oncogene Proteins c-fos/metabolism , Statistics, Nonparametric
19.
Elife ; 72018 02 28.
Article in English | MEDLINE | ID: mdl-29489453

ABSTRACT

Both passive exposure and active learning through reinforcement enhance fine sensory discrimination abilities. In the olfactory system, this enhancement is thought to occur partially through the integration of adult-born inhibitory interneurons resulting in a refinement of the representation of overlapping odorants. Here, we identify in mice a novel and unexpected dissociation between passive and active learning at the level of adult-born granule cells. Specifically, while both passive and active learning processes augment neurogenesis, adult-born cells differ in their morphology, functional coupling and thus their impact on olfactory bulb output. Morphological analysis, optogenetic stimulation of adult-born neurons and mitral cell recordings revealed that passive learning induces increased inhibitory action by adult-born neurons, probably resulting in more sparse and thus less overlapping odor representations. Conversely, after active learning inhibitory action is found to be diminished due to reduced connectivity. In this case, strengthened odor response might underlie enhanced discriminability.


Subject(s)
Brain/physiology , Learning , Neurons/cytology , Neurons/physiology , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Animals , Cell Shape , Cells , Mice , Optogenetics
20.
Behav Neurosci ; 132(2): 88-98, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29494168

ABSTRACT

Animals choose between sensory stimuli, a highly complex behavior which includes detection, discrimination, preference, and memory processes. Rodents are reported to display robust preferences for some odors, for instance, in the context of choosing among possible mates or food items. In contrast to the apparent robustness of responses toward these and other "ethologically relevant" odors, little is known about the robustness of behaviors toward odors which have no overt role in the rodent ecological niche, so-called "nonethologically relevant" odors. We developed an apparatus for monitoring the nose-poking behavior of mice and used this apparatus to explore the prevalence and stability of choices among different odors both across mice, and within mice over successive days. Mice were tested with a panel of either ethologically relevant or nonethologically relevant odors in an olfactory multiple-choice test. Significant preferences to nonethologically relevant odors were observed across the population of mice, with longer investigation durations to some odors more than to others. However, we found substantial inter-mouse variability in these responses, and that responses to these odors even varied within mice across days of testing. Tests with ethologically relevant odors revealed that responses toward these odors were also variable across mice, but within individual mice, responses were somewhat stable. This work establishes an olfactory multiple-choice test for monitoring odor investigation, choice, and preference behaviors and the application of this apparatus to assess across- and within-mouse odor-preference choice stability. These results highlight that odor preferences, as assayed by measuring choice behaviors, are variable. (PsycINFO Database Record


Subject(s)
Behavior, Animal , Choice Behavior , Olfactory Perception , Animals , Behavior Rating Scale , Individuality , Male , Mice, Inbred C57BL , Motor Activity , Nose , Odorants , Smell , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...