Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 100(1): 191-199, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26384865

ABSTRACT

In the present study a metabolically versatile co-culture with two Bacilli and one yeast strain was developed using enrichment culture techniques. The developed co-culture had affinity to degrade both aliphatic and aromatic fractions of petroleum crude oil. Degradation kinetics was established for designing the fermentation protocol of the co-culture. The developed mass culture strategy led to achieve the reduction in surface tension (26dynescm(-1) from 69 dynescm(-1)) and degradation of 67% in bench scale experiments. The total crude oil degradation of 96% was achieved in 4000l of natural seawater after 28days without adding any nutrients. The survival of the augmented co-culture was maintained (10(9)cellsml(-1)) in contaminated marine environment. The mass culture protocol devised for the bioaugmentation was a key breakthrough that was subsequently used for pilot scale studies with 100l and 4000l of natural seawater for potential application in marine oil spills.


Subject(s)
Biodegradation, Environmental , Bioreactors/microbiology , Petroleum/metabolism , Bacillus/metabolism , Candida/metabolism , Coculture Techniques , Hydrocarbons/metabolism , India , Microbial Consortia , Petroleum Pollution , Seawater/microbiology
2.
Indian J Exp Biol ; 53(6): 388-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26155679

ABSTRACT

The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Environmental Pollutants/analysis , Industrial Waste/analysis , Nickel/chemistry , Petroleum , Biodegradation, Environmental , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Hydrogen-Ion Concentration , Nickel/analysis , Nickel/metabolism , Temperature
3.
Bull Environ Contam Toxicol ; 89(2): 257-62, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22669336

ABSTRACT

Feasibility study carried out at the site prior to the full scale study showed that the introduced bacterial consortium effectively adapted to the local environment of the soil at bioremediation site. The soil samples were collected from the contaminated fields after treatment with bacterial consortium at different time intervals and analyzed by gas chromatography after extraction with hexane and toluene. At time zero (just before initiation of bioremediation), the concentration of total petroleum hydrocarbons in the soil (25-cm horizon) of plot A, B, C and D was 30.90 %, 18.80 %, 25.90 % and 29.90 % respectively, after 360 days of treatment with microbial consortia was reduced to 0.97 %, 1.0 %, 1.0 %, and 1.1 % respectively. Whereas, only 5 % degradation was observed in the control plot after 365 days (microbial consortium not applied).


Subject(s)
Bacteria/metabolism , Microbial Consortia , Petroleum Pollution , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Chromatography, Gas , Hexanes/metabolism , Hydrocarbons/metabolism , Petroleum/metabolism , Toluene/metabolism
4.
J Environ Sci (China) ; 23(8): 1394-402, 2011.
Article in English | MEDLINE | ID: mdl-22128548

ABSTRACT

We compared the efficacy of a natural biocide with four chemical tetrakishydroxymethyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, and formaldehyde, glutaraldehyde, to control microbial induced corrosion in oil pipelines. The efficacy of biocides were monitored against Desulfovibrio vulgaris and Desulfovibrio gigas in experimental pipes by measuring cell counts, H2S production, Fe(II) production, production of extracellular polymeric substances and structure of biofilm. The treatment with cow urine had minimum planktonic cell counts of 3 x 10(2) CFU/mL as well as biofilm cell counts of 9 x 10(1) CFU/mL as compared with tetrakishydroxyl methyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, formaldehyde and glutaraldehyde. Sulfide production was the lowest with cow urine (0.08 mmol/L), followed by tetrakishydroxymethyl phosphonium sulfonate 0.72 mmol/L. On day 90 of treatment, Fe(II) production was also found to be the lowest with cow urine. The scanning electron microscopic studies indicated that the biofilm bacteria were killed by cow urine. These results demonstrate the cow urine mediated control of microbially induced corrosion, and this is indicative of its potential as a viable substitute of toxic biocides. To the best of our knowledge, this seems to be the first report which screens possible biocidal activity by cow urine as compared to the most common biocides which oil industry is currently using.


Subject(s)
Corrosion , Desulfovibrio gigas/drug effects , Desulfovibrio vulgaris/drug effects , Disinfectants/pharmacology , Biofilms/drug effects
5.
Mol Biol Evol ; 21(3): 454-62, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14660684

ABSTRACT

The Indian subcontinent contains 20 well-characterized goat breeds, which vary in their genetic potential for the production of milk, meat, and fibre; disease resistance; heat tolerance; and fecundity. Indian goats make up 20% of the world's goat population, but there has been no extensive study of these economically important animals. Therefore, we have undertaken the present investigation of 363 goats belonging to 10 different breeds from different geographic regions of India using mtDNA sequence data from the HVRI region. We find evidence for population structure and novel lineages in Indian goats and cannot reconcile the genetic diversity found within the major lineage with domestication starting 10,000 years ago from a single mtDNA ancestor. Thus, we propose a more complex origin for domestic goats.


Subject(s)
Goats/genetics , Analysis of Variance , Animals , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Geography , Haplotypes , India , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...