Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 256(4): 78, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36094622

ABSTRACT

MAIN CONCLUSION: Vascular development-related TRN1 transcription is suppressed by cytosine methylation in fully developed leaves of tomato. ToLCNDV infection disrupts methylation machinery and reactivates TRN1 expression - likely causing abnormal leaf growth pattern. Leaf curl disease of tomato caused by tomato leaf curl New Delhi virus (ToLCNDV) inflicts huge economical loss. Disease symptoms resemble leaf developmental defects including abnormal vein architecture. Leaf vein patterning-related TORNADO1 gene's (SlTRN1) transcript level is augmented in virus-infected leaves. To elucidate the molecular mechanism of the upregulation of SlTRN1 in vivo, we have deployed SlTRN1 promoter-reporter transgenic tomato plants and investigated the gene's dynamic expression pattern in leaf growth stages and infection. Expression of the gene was delimited in the vascular tissues and suppressed in fully developed leaves. WRKY16 transcription factor readily activated SlTRN1 promoter in varied sized leaves and upon virus infection, while silencing of WRKY16 gene resulted in dampened promoter activity. Methylation-sensitive PCR analyses confirmed the accumulation of CHH methylation at multiple locations in the SlTRN1 promoter in older leaves. However, ToLCNDV infection reverses the methylation status and restores expression level in the leaf vascular bundle. The virus dampens the level of key maintenance and de novo DNA methyltransferases SlDRM5, SlMET1, SlCMT2 with concomitant augmentation of two DNA demethylases, SlDML1 and SlDML2 levels in SlTRN1 promoter-reporter transgenics. Transient overexpression of SlDML2 mimics the virus-induced hypomethylation state of the SlTRN1 promoter in mature leaves, while silencing of SlDML2 lessens promoter activity. Furthermore, in line with the previous studies, we confirm the crucial role of viral suppressors of RNA silencing AC2 and AC4 proteins in promoting DNA demethylation and directing it to restore activated transcription of SlTRN1. Unusually elevated expression of SlTRN1 may negatively impact normal growth of leaves.


Subject(s)
Begomovirus , Solanum lycopersicum , Begomovirus/genetics , Gene Expression , Solanum lycopersicum/genetics , Plant Diseases/genetics , Plants, Genetically Modified/genetics
2.
Virus Res ; 300: 198443, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33940005

ABSTRACT

GroEL or symbionin synthesized by the endosymbionts of whitefly (Bemisia tabaci)/ aphids play a cardinal role in the persistent, circulative transmission of plant viruses by binding to viral coat protein/ read-through protein. Allium sativum leaf agglutinin (ASAL), a Galanthus nivalis agglutinin (GNA)- related mannose-binding lectin from garlic leaf has been reported as a potent controlling agent against hemipteran insects including whitefly and aphids. GroEL related chaperonin- symbionin was previously identified as a receptor of ASAL by the present group in the brush border membrane vesicle (BBMV) of mustard aphid. In the present study similar GroEL receptor of ASAL has been identified through LC-MS/MS in the BBMV of B. tabaci which serves as a vector for several plant viruses including tomato leaf curl New Delhi virus (ToLCNDV). Ligand blot analysis of ASAL-fed B. tabaci showed that when GroEL is pre-occupied by ASAL, it completely blocks its further binding to ToLCNDV coat protein (ToLCNDV-CP). Prior feeding of ASAL hindered the co-localization of ToLCNDV-CP and GroEL in the midgut of B. tabaci. Immunoprecipitation followed by western blot with ASAL-fed B. tabaci yielded similar result. Moreover, ASAL feeding inhibited viral transmission by B. tabaci. Together, these results confirmed that the interaction of ASAL with GroEL interferes with the binding of ToLCNDV-CP and inhibits further B. tabaci mediated viral transmission.


Subject(s)
Aphids , Begomovirus , Garlic , Hemiptera , Agglutinins , Animals , Begomovirus/genetics , Chromatography, Liquid , Lectins , Plant Diseases , Tandem Mass Spectrometry
3.
Funct Integr Genomics ; 18(2): 101-111, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29250708

ABSTRACT

Armadillo repeat family is well-characterized in several plant species for their involvement in multiple regulatory processes including growth, development, and stress response. We have previously shown a three-fold higher expression of ARM protein-encoding in tomato cultivar tolerant to tomato leaf curl New Delhi virus (ToLCNDV) compared to susceptible cultivar upon virus infection. This suggests the putative involvement of ARM proteins in defense response against virus infection; however, no comprehensive investigation has been performed to address this inference. In the present study, we have identified a total of 46 ARM-repeat proteins (SlARMs), and 41 U-box-containing proteins (SlPUBs) in tomato. These proteins and their corresponding genes were studied for their physicochemical properties, gene structure, domain architecture, chromosomal localization, phylogeny, and cis-regulatory elements in the upstream promoter region. Expression profiling of candidate genes in response to ToLCNDV infection in contrasting tomato cultivars showed significant upregulation of SlARM18 in the tolerant cultivar. Virus-induced gene silencing of SlARM18 in the tolerant tomato cultivar conferred susceptibility, which suggests the involvement of this gene in resistance mechanism. Further studies are underway to functionally characterize SlARM18 to delineate its precise role in defense mechanism.


Subject(s)
Armadillo Domain Proteins/genetics , Disease Resistance/genetics , Gene Silencing , Plant Proteins/genetics , Solanum lycopersicum/genetics , Armadillo Domain Proteins/metabolism , Begomovirus/pathogenicity , Solanum lycopersicum/virology , Plant Proteins/metabolism
4.
Plant Mol Biol ; 93(4-5): 511-532, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28039561

ABSTRACT

KEY MESSAGE: Genome-wide analysis was carried out to identify and analyze differential expression pattern of tomato membrane bound NAC transcription factors (SlNACMTFs) during stresses. Two biotic-stress-related SlNACMTFs have been characterized to elucidate their regulatory function. NAC transcription factors are known regulators of stress-related gene expression. As Stresses are perceived and transmitted by membrane-bound proteins, functional characterization of membrane-associated NAC transcription factors in tomato can reveal valuable insight about membrane-mediated stress-signalling. Tomato genome encodes 13 NAC genes which have predicted transmembrane domain(s) (SlNACMTFs). mRNA of 12 SlNACMTFs were readily detected in multiple tissues, and also in polysome isolated from leaf, confirming active transcription and translation from these genes occur under normal physiological condition. Additionally, most of the SlNACMTFs were differentially regulated during stresses and stress-related transcription factor binding sites are prevalent in their promoters. SlNACMTF3 and 8 were majorly regulated in biotic and abiotic stresses. Like other MTFs, SlNACMTF3 was translocated to the plasma membrane, whereas the C-terminus truncated (ΔC) form localized in the cytoplasm and the nucleus. Accordingly, the ΔC forms significantly influenced the activity of promoters harbouring NAC binding sites (NACbs). Furthermore, the NAC domain of these transcription factors could directly interact with an NACbs, and the proteins failed to regulate a promoter lacking a crucial NACbs. Interestingly, the type of influence to an NACbs containing promoter was dependent on the context of the NACbs, as the same SlNACMTF showed an alternative mode of regulation on different promoters, as well as the same promoter activity was oppositely regulated by two different SlNACMTF. Finally, both SlNACMTFs demonstrated the differential regulatory effect on the expression of several stress-related genes by interacting with the putative NACbs in their promoter region, suggesting their direct role in plant stress response.


Subject(s)
Gene Expression Profiling/methods , Membrane Proteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Alternaria/physiology , Amino Acid Sequence , Binding Sites/genetics , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/microbiology , Membrane Proteins/classification , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Plants, Genetically Modified , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Sodium Chloride/pharmacology , Temperature , Transcription Factors/classification
5.
Plant Sci ; 241: 221-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26706073

ABSTRACT

Tomato leaf curl disease caused by geminiviruses is manifested by curling and puckering of leaves and thickening of veins, resembling developmental defects. This is probably due to the long-term altered regulation of expression of development related gene(s). Our results show that in the infected leaves the transcript level of TORNADO1 (SlTRN1), a gene important for cell expansion and vein formation, increased significantly. SlTRN1 is transcribed from two start sites. The preferential usage of one start site governs its expression in viral-stressed plants. To investigate the role of specific promoter elements in mediating differential expression of SlTRN1, we performed SlTRN1 promoter analysis. The promoter-regulatory sequences harbor multiple W-boxes. The SlWRKY16 transcription factor actively interacts with one of the W-boxes. WRKY proteins are commonly induced by salicylic acid (SA), and consequently SA treatment increased transcript level of SlWRKY16 and SlTRN1. Further mutational analyses confirmed the role of W-boxes in mediating SlTRN1 induction during ToLCNDV infection or SA treatment. We postulate that the activation of SA pathway during stress-response in tomato induces WRKY16, which in turn modulates transcription of SlTRN1 gene. This study unravels the mechanism of regulation of a developmental gene during stress-response, which may affect the severity of symptoms.


Subject(s)
Begomovirus/physiology , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Base Sequence , Solanum lycopersicum/metabolism , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...