Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 313: 107291, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39029163

ABSTRACT

Amyloid proteins and peptides play a pivotal role in the etiology of various neurodegenerative diseases, including Alzheimer's disease (AD). Synthetically designed small molecules/ peptides/ peptidomimetics show promise towards inhibition of various kinds of amyloidosis. However, exploration of compounds isolated from natural extracts having such potential is lacking. Herein, we have investigated the repurposing of a traditional Indian medicine Lasunadya Ghrita (LG) in AD. LG is traditionally used to treat gut dysregulation and mental illnesses. Various extracts of LG were obtained, characterized, and analyzed for inhibition of Aß aggregation. Biophysical studies show that the water extract of LG (LGWE) is more potent in inhibiting Aß peptide aggregation and defibrillation of Aß40/Aß42 aggregates. NMR studies showed that LGWE binds to the central hydrophobic area and C-terminal residues of Aß40/Aß42, thereby modulating the aggregation, and reducing cell membrane damage. Additionally, LGWE rescues Aß toxicity in neuronal SH-SY5Y cells evident from decreases in ROS generation, membrane leakage, cellular apoptosis, and calcium dyshomeostasis. Notably, LGWE is non-toxic to neuronal cells and mouse models. Our study thus delves into the mechanistic insights of a repurposed drug LGWE with the potential to ameliorate Aß induced neuroinflammation.

2.
Langmuir ; 39(21): 7231-7248, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37094111

ABSTRACT

Misfolding and self-assembly of several intrinsically disordered proteins into ordered ß-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-ß-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.


Subject(s)
Metal Nanoparticles , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Gold/chemistry , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Amyloid/chemistry
3.
Int J Biol Macromol ; 241: 124470, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37088193

ABSTRACT

Aggregation of the human islets amyloid polypeptide, or hIAPP, is linked to ß-cell death in type II diabetes mellitus (T2DM). Different pancreatic ß-cell environmental variables such as pH, insulin and metal ions play a key role in controlling the hIAPP aggregation. Since insulin and hIAPP are co-secreted, it is known from numerous studies that insulin suppresses hIAPP fibrillation by preventing the initial dimerization process. On the other hand, zinc and copper each have an inhibitory impact on hIAPP fibrillation, but copper promotes the production of toxic oligomers. Interestingly, the insulin oligomeric equilibrium is controlled by the concentration of zinc ions when the effect of insulin and zinc has been tested together. Lower zinc concentrations cause the equilibrium to shift towards the monomer and dimer states of insulin, which bind to monomeric hIAPP and stop it from developing into a fibril. On the other hand, the combined effects of copper and insulin have not yet been studied. In this study, we have demonstrated how the presence of copper affects hIAPP aggregation and the toxicity of the resultant conformers with or without insulin. For this purpose, we have used a set of biophysical techniques, including NMR, fluorescence, CD etc., in combination with AFM and cell cytotoxicity assay. In the presence and/or absence of insulin, copper induces hIAPP to form structurally distinct stable toxic oligomers, deterring the fibrillation process. More specifically, the oligomers generated in the presence of insulin have slightly higher toxicity than those formed in the absence of insulin. This research will increase our understanding of the combined modulatory effect of two ß-cell environmental factors on hIAPP aggregation.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Humans , Diabetes Mellitus, Type 2/drug therapy , Copper/pharmacology , Islet Amyloid Polypeptide/metabolism , Zinc/pharmacology , Zinc/chemistry , Amyloid/chemistry
4.
Phys Chem Chem Phys ; 24(36): 22250-22262, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36098073

ABSTRACT

Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.


Subject(s)
Amyloidosis , Islet Amyloid Polypeptide , Amyloid/chemistry , Amyloidogenic Proteins , Epitopes , Humans , Islet Amyloid Polypeptide/chemistry
5.
Bioconjug Chem ; 32(8): 1729-1741, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34282895

ABSTRACT

Conjugation with poly(ethylene glycol) ("PEGylation") is a widely used approach for improving the therapeutic propensities of peptide and protein drugs through prolonging bloodstream circulation, reducing toxicity and immunogenicity, and improving proteolytic stability. In the present study, we investigate how PEGylation affects the interaction of host defense peptides (HDPs) with bacterial lipopolysaccharide (LPS) as well as HDP suppression of LPS-induced cell activation. In particular, we investigate the effects of PEGylation site for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), a peptide displaying potent anti-inflammatory effects, primarily provided by its N-terminal part. PEGylation was performed either in the N-terminus, the C-terminus, or in both termini, keeping the total number of ethylene groups (n = 48) constant. Ellipsometry showed KYE28 to exhibit pronounced affinity to both LPS and its hydrophobic lipid A moiety. The PEGylated peptide variants displayed lower, but comparable, affinity for both LPS and lipid A, irrespective of the PEGylation site. Furthermore, both KYE28 and its PEGylated variants triggered LPS aggregate disruption. To investigate the peptide structure in such LPS complexes, a battery of nuclear magnetic resonance (NMR) methods was employed. From this, it was found that KYE28 formed a well-folded structure after LPS binding, stabilized by hydrophobic domains involving aromatic amino acids as well as by electrostatic interactions. In contrast, the PEGylated peptide variants displayed a less well-defined secondary structure, suggesting weaker LPS interactions in line with the ellipsometry findings. Nevertheless, the N-terminal part of KYE28 retained helix formation after PEGylation, irrespective of the conjugation site. For THP1-Xblue-CD14 reporter cells, KYE28 displayed potent suppression of LPS activation at simultaneously low cell toxicity. Interestingly, the PEGylated KYE28 variants displayed similar or improved suppression of LPS-induced cell activation, implying the underlying key role of the largely retained helical structure close to the N-terminus, irrespective of PEGylation site. Taken together, the results show that PEGylation of HDPs can be done insensitively to the conjugation site without losing anti-inflammatory effects, even for peptides inducing such effects through one of its termini.


Subject(s)
Lipid A/chemistry , Lipopolysaccharides/chemistry , Peptides/chemistry , Polyethylene Glycols , Cell Line , Gene Expression Regulation/drug effects , Hemolysis , Humans , Models, Molecular , NF-kappa B/genetics , NF-kappa B/metabolism , Peptides/pharmacology , Protein Binding , Protein Conformation , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
6.
ACS Chem Neurosci ; 12(15): 2903-2916, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34292711

ABSTRACT

Solvent dynamics strongly induce the fibrillation of an amyloidogenic system. Probing the solvation mechanism is crucial as it enables us to predict different proteins' functionalities, such as the aggregation propensity, structural flexibility, and toxicity. This work shows that a straightforward NMR method in conjunction with phenomenological models gives a global and qualitative picture of water dynamics at different concentrations and temperatures. Here, we study amyloid system Aß40 and its fragment AV20 (A21-V40) and G37L (mutation at Gly37 → Leu of AV20), having different aggregation and toxic properties. The independent validation of this method is elucidated using all-atom classical MD simulation. These two state-of-the-art techniques are pivotal in linking the effect of solvent environment in the near hydration-shell to their aggregation nature. The time-dependent modulation in solvent dynamics probed with the NMR solvent relaxation method can be further adopted to gain insight into amyloidogenesis and link with their toxicity profiles.


Subject(s)
Protein Aggregates , Water , Amyloid beta-Peptides , Molecular Dynamics Simulation , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...