Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(39): 46549-46557, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34553589

ABSTRACT

Progress in quantum dot (QD)-based solar cells has been underpinned by the improvements in surface passivation and advancements in device engineering. Acute control over the surface properties is crucial to restrict the formation of in-gap trap states and improve the QD coupling in achieving conducting QD films. In this report, we demonstrate a solution-phase hybrid passivation strategy, which is beneficial in removing detrimental hydroxyl traps and improving the coupling between QDs by reducing the interdot distance. Advancement in surface passivation is translated to the long carrier lifetime, higher carrier mobility, and superior protection toward degradations in QD solids. The performance of solar cell devices is increased by 26% to reach an efficiency of 10.6%, compared to the state-of-the-art lead halide passivated solar cells. The improvement in solar cell performance is supported by the reduction of trap states and an 80 nm increase in thickness of the light-absorbing QD layer.

2.
ACS Appl Mater Interfaces ; 11(29): 26100-26108, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31257850

ABSTRACT

Tunable-band-gap colloidal QDs are a potential building block to harvest the wide-energy solar spectrum. The solution-phase surface passivation with lead halide-based halometallate ligands has remarkably simplified the processing of quantum dots (QDs) and enabled the proficient use of materials for the development of solar cells. It is, however, shown that the hallometalate ligand passivated QD ink allows the formation of thick crystalline shell layer, which limits the carrier transport of the QD solids. Organic thiols have long been used to develop QD solar cells using the solid-state ligand exchange approach. However, their use is limited in solution-phase passivation due to poor dispersity of thiol-treated QDs in common solvents. In this report, a joint passivation strategy using thiol and halometallate ligand is developed to prepare the QD ink. The mutually passivated QDs show a 50% reduction in shell thickness, reduced trap density, and improved monodispersity in their solid films. These improvements lead to a 4 times increase in carrier mobility and doubling of the diffusion length, which enable the carrier extraction from a much thicker absorbing layer. The photovoltaic devices show a high efficiency of 10.3% and reduced hysteresis effect. The improvement in surface passivation leads to reduced oxygen doping and improved ambient stability of the solar cells.

4.
ACS Appl Mater Interfaces ; 10(45): 39074-39082, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30350942

ABSTRACT

Colloidal quantum dots (QDs) have emerged as promising materials to harness panchromatic solar light, owing to their size-tunable optoelectronic properties. Advancements in surface passivation strategy and processing technique have contributed immensely to their developments in photovoltaic applications. Recently, surface passivation using halometallate ligands was shown to form a protective shell layer, which reduced the structural and energetic disorder in the QD solid. Here, we report lead sulfide (PbS) QDs coupled to an oriented two-dimensionally (2D) confined crystalline matrix by using a halometallate ligand. The QDs undergo surface reconstruction during the ligand treatment process, which leads to change in their shape, size, and axis length. We show that the 2D matrix is a combination of two distinct crystalline layers consisting of a crystalline Pb-amine complex and a 2D perovskite layer. The thickness of the matrix layer is modulated further by adjusting counter cations, which results in the enhancement in charge carrier mobility, carrier recombination lifetime, and diffusion length in the QD solid. 2D passivated QDs are implemented to fabricate photovoltaic devices with high power conversion efficiency of 9.1%.

5.
Langmuir ; 34(20): 5788-5797, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29715041

ABSTRACT

A rational synthetic method that produces monodisperse and air-stable metal sulfide colloidal quantum dots (CQDs) in organic nonpolar solvents using octyl dithiocarbamic acid (C8DTCA) as a sulfur source, is reported. The fast decomposition of metal-C8DTCA complexes in presence of primary amines is exploited to achieve this purpose. This novel technique is generic and can be applied to prepare diverse CQDs, like CdS, MnS, ZnS, SnS, and In2S3, including more useful and in-demand PbS CQDs and plasmonic nanocrystals of Cu2S. Based on several control reactions, it is postulated that the reaction involves the in situ formation of a metal-C8DTCA complex, which then reacts in situ with oleylamine at slightly elevated temperature to decompose into metal sulfide CQDs at a controlled rate, leading to the formation of the materials with good optical characteristics. Controlled sulfur precursor's reactivity and stoichiometric reaction between C8DTCA and metal salts affords high conversion yield and large-scale production of monodisperse CQDs. Tunable and desired crystal size could be achieved by controlling the precursor reactivity by changing the reaction temperature and reagent ratios. Finally, the photovoltaic devices fabricated from PbS CQDs displayed a power conversion efficiency of 4.64% that is comparable with the reported values of devices prepared with PbS CQDs synthesized by the standard methods.

6.
Nanoscale ; 10(3): 1072-1080, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29271437

ABSTRACT

Surface chemistry plays a crucial role in determining the electronic properties of quantum dot solids and may well be the key to mitigate loss processes involved in quantum dot solar cells. Surface ligands help to maintain the shape and size of the individual dots in solid films, to preserve the clean energy band gap of the individual particles and to control charge carrier conduction across solid films, in turn regulating their performance in photovoltaic applications. In this report, we show that the changes in size, shape and functional groups of small chain organic ligands enable us to modulate mobility, dielectric constant and carrier doping density of lead sulfide quantum dot solids. Furthermore, we correlate these results with performance, stability and recombination processes in the respective photovoltaic devices. Our results highlight the critical role of surface chemistry in the electronic properties of quantum dots. The role of the size, functionality and the surface coverage of the ligands in determining charge transport properties and the stability of quantum dot solids have been discussed. Our findings, when applied in designing new ligands with higher mobility and improved passivation of quantum dot solids, can have important implications for the development of high-performance quantum dot solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...