Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 33: 493-510, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37583574

ABSTRACT

Self-assembled branched DNA (bDNA) nanomaterials have exhibited their functionality in various biomedical and diagnostic applications. However, the anionic cellular membrane has restricted the movement of bDNA nanostructures. Recently, amphiphilic peptides have been investigated as cationic delivery agents for nucleic acids. Herein, we demonstrate a strategy for delivering functional bDNA nanomaterials into mammalian cells using self-assembled linear peptides. In this study, antisense oligonucleotides of vascular endothelial growth factor (VEGF) were inserted in the overhangs of bDNAs. Novel linear peptides have been synthesized and the peptide-bound bDNA complex formation was examined using various biophysical experiments. Interestingly, the W4R4-bound bDNAs were found to be exceptionally stable against DNase I compared to other complexes. The delivery of fluorescent-labeled bDNAs into the mammalian cells confirmed the potential of peptide transporters. Furthermore, the functional efficacy of the peptide-bound bDNAs has been examined through RT-PCR and western blot analysis. The observed results revealed that W4R4 peptides exhibited excellent internalization of antisense bDNAs and significantly suppressed (3- to 4-fold) the transcripts and translated product of VEGF compared to the control. In summary, the results highlight the potential use of peptide-based nanocarrier for delivering bDNA nanostructures to regulate the gene expression in cell lines.

2.
Pharmaceutics ; 15(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839988

ABSTRACT

RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the ß-alanine (ßA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-ßA-ßA-W4-ßA-ßA-R4-CO-NH2 and Ac-K-ßA-ßA-W4-ßA-ßA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and PEG550. Alternatively, the side chain of lysine in the second sequence was used for conjugation with cholesterol or oleic acid. We hypothesized that amphiphilic peptides and optimum fatty acyl chain or PEG could function as an effective siRNA carrier by complementing each structural component's self-assembly and membrane internalization properties. None of the designed peptides showed cytotoxicity up to 10 µM. Serum stability studies suggested that the newly designed peptides efficiently protected siRNA against early degradation by nucleases. Flow cytometry analysis indicated 50-90% cellular uptake of siRNA using the newly developed modified linear peptides (MLPs). Western blot results revealed more than 90% protein downregulation after targeting STAT3 in MDA-MB-231 and SKOV-3 cell lines. In summary, a new peptide class was developed to safely and efficiently deliver siRNA.

3.
Pharmaceutics ; 14(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35456715

ABSTRACT

Recent approvals of siRNA-based products motivated the scientific community to explore siRNA as a treatment option for several intractable ailments, especially cancer. The success of approved siRNA therapy requires a suitable and safer drug delivery agent. Herein, we report a series of oleyl conjugated histidine-arginine peptides as a promising nonviral siRNA delivery tool. The conjugated peptides were found to bind with the siRNA at N/P ratio ≥ 2 and demonstrated complete protection for the siRNA from early enzymatic degradation at N/P ratio ≥ 20. Oleyl-conjugated peptide -siRNA complexes were found to be noncytotoxic in breast cancer cells (MCF-7 and MDA-MB-231) and normal breast epithelial cells (MCF 10A) at N/P ratio of ~40. The oleyl-R3-(HR)4 and oleyl-R4-(HR)4 showed ~80-fold increased cellular uptake in MDA-MB-231 cells at N/P 40. Moreover, the conjugated peptides-siRNA complexes form nanocomplexes (~115 nm in size) and have an appropriate surface charge to interact with the cell membrane and cause cellular internalization. Furthermore, this study provides a proof-of-concept that oleyl-R5-(HR)4 can efficiently silence STAT-3 gene (~80% inhibition) in MDA-MB-231 cells with similar effectiveness to Lipofectamine. Further exploration of this approach holds a great promise in discovering a successful in vivo siRNA delivery agent with a favorable pharmacokinetic profile.

4.
Cells ; 11(7)2022 03 29.
Article in English | MEDLINE | ID: mdl-35406720

ABSTRACT

A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial fibroblast uterine sarcoma cells (MES-SA). A concentration of 5-10 µM and 3 h incubation were selected in uptake studies. The cellular uptake of a fluorescent-labeled phosphopeptide, stavudine, lamivudine, emtricitabine, and siRNA was determined in the presence of peptides via flow cytometry. Among the peptides, [DipR]5 (10 µM) was found to be the most efficient transporter and significantly improved the uptake of F'-GpYEEI, i.e., by approximately 130-fold after 3 h incubation in CCRF-CEM cells. Confocal microscopy further confirmed the improved delivery of fluorescent-labeled [DipR]5 (F'-[K(DipR)5]) alone and F'-GpYEEI in the presence of [DipR]5 in MDA-MB-231 cells. The uptake of fluorescent-labeled siRNA (F'-siRNA) in the presence of [DipR]5 with N/P ratios of 10 and 20 was found to be 30- and 50-fold higher, respectively, compared with the cells exposed to F'-siRNA alone. The presence of endocytosis inhibitors, i.e., nystatin, chlorpromazine, chloroquine, and methyl ß-cyclodextrin, did not completely inhibit the cellular uptake of F'-[K(DipR)5] alone or F'-GpYEEI in the presence of [DipR]5, suggesting that a combination of mechanisms contributes to uptake. Circular dichroism was utilized to determine the secondary structure, while transmission electron microscopy was used to evaluate the particle sizes and morphology of the peptides. The data suggest the remarkable membrane transporter property of [DipR]5 for improving the delivery of various small molecules and cell-impermeable negatively charged molecules (e.g., siRNA and phosphopeptide).


Subject(s)
Adenocarcinoma , Cell-Penetrating Peptides , Amino Acids , Animals , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Female , HEK293 Cells , Humans , Phenylalanine , Phosphopeptides , RNA, Small Interfering , Swine
5.
Mol Pharm ; 19(5): 1338-1355, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35347995

ABSTRACT

RNA interference (RNAi) is a powerful tool capable of targeting virtually any protein without time-consuming and expensive drug development studies. However, due to obstacles facing efficient and safe delivery, RNAi-based therapeutic approach remains a challenge. Herein, we have designed and synthesized a number of disulfide-constraining cyclic and hybrid peptides using tryptophan and arginine residues. Our hypothesis was that peptide structures would undergo reduction by intracellular glutathione (more abundant in cancer cells) and unpack the small interfering RNA (siRNA) from the peptide/siRNA complexes. A subset of newly developed peptides (specifically, C4 and H4) exhibited effective cellular internalization of siRNA (∼70% of the cell population; monitored by flow cytometry and confocal microscopy), the capability of protecting siRNA against early degradation by nucleases (monitored by gel electrophoresis), minimal cytotoxicity in selected cell lines (studied by cell viability and LC50 calculations), and efficient protein silencing by 70-75% reduction in the expression of targeting signal transducer and activator of transcription 3 (STAT3) in human triple-negative breast cancer (TNBC) MDA-MB-231 cells, analyzed using the Western blot technique. Our results indicate the birth of a promising new family of siRNA delivery systems that are capable of safe and efficient delivery, even in the presence of nucleases.


Subject(s)
Gene Silencing , Peptides, Cyclic , Cell Line, Tumor , Disulfides , Humans , Oxidation-Reduction , Peptides/chemistry , RNA Interference , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics
6.
Eur J Pharm Sci ; 171: 106125, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35033697

ABSTRACT

Vascular endothelial growth factor (VEGF) is considered as one of the vital growth factors for angiogenesis, which is primarily responsible for the progress and maintenance of new vascular network in tumor. Numerous studies report that inhibition of VEGF-induced angiogenesis is a potent technique for cancer suppression. Recently, RNA interference, especially small interfering RNA (siRNA) signified a promising approach to suppress the gene expression. However, the clinical implementation of biological macromolecules such as siRNA is significantly limited because of stability and bioavailability issues. Herein, self-assembled peptide nanospheres have been generated from L,L-cyclic peptides using hydrophobic (Trp), positively charged (Arg) and cysteine (Cys) amino acid residues and demonstrated as vehicles for intracellular delivery of VEGF siRNA and VEGF antisense oligonucleotide. Formation of peptide nanostructures is confirmed by HR-TEM, AFM, SEM and DLS analysis. Possible mechanism of self-assembly of the cyclic peptides and their binding with macromolecules are demonstrated by in-silico analysis. Gel electrophoresis reveals that the newly generated peptide based organic materials exhibit strong binding affinity toward siRNAs / antisense oligonucleotides (ASOs) at optimum concentration. Flow cytometry and confocal microscopy results confirm the efficiency of the new biomaterials toward the intracellular delivery of fluorescent labeled siRNA / ASOs. Furthermore, VEGF expression evaluated by western blot and RT-PCR upon the delivery of functional VEGF siRNA/ASOs suggests that very low concentrations of VEGF siRNA/ASOs cause significant gene knockdown at protein and mRNA levels, respectively.


Subject(s)
Nanospheres , Vascular Endothelial Growth Factor A , Cell Line, Tumor , Cytoplasm/metabolism , Peptides, Cyclic , RNA, Small Interfering/genetics , Vascular Endothelial Growth Factor A/metabolism
7.
J Med Chem ; 65(1): 665-687, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34978443

ABSTRACT

We report the synthesis and antibacterial activities of a series of amphiphilic membrane-active peptides composed, in part, of various nongenetically coded hydrophobic amino acids. The lead cyclic peptides, 8C and 9C, showed broad-spectrum activity against drug-resistant Gram-positive (minimum inhibitory concentration (MIC) = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria. The cytotoxicity study showed the predominant lethal action of the peptides against bacteria as compared with mammalian cells. A plasma stability study revealed approximately 2-fold higher stability of lead cyclic peptides as compared to their linear counterparts after 24 h of incubation. A calcein dye leakage experiment revealed the membranolytic effect of the cyclic peptides. Nuclear magnetic resonance spectroscopy and molecular dynamics simulation studies of the interaction of the peptides with the phospholipid bilayer provided a solid structural basis to explain the membranolytic action of the peptides with atomistic details. These results highlight the potential of newly designed amphiphilic peptides as the next generation of peptide-based antibiotics.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cell Membrane/drug effects , Peptides/chemical synthesis , Peptides/pharmacology , Antimicrobial Cationic Peptides , Cell Survival/drug effects , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , HEK293 Cells , Hemolysis/drug effects , Humans , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Dynamics Simulation
8.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34832846

ABSTRACT

We have recently reported that a cyclic peptide containing five tryptophan, five arginine, and one cysteine amino acids [(WR)5C], was able to produce peptide-capped gadolinium nanoparticles, [(WR)5C]-GdNPs, in the range of 240 to 260 nm upon mixing with an aqueous solution of GdCl3. Herein, we report [(WR)5C]-GdNPs as an efficient siRNA delivery system. The peptide-based gadolinium nanoparticles (50 µM) did not exhibit significant cytotoxicity (~93% cell viability at 50 µM) in human leukemia T lymphoblast cells (CCRF-CEM) and triple-negative breast cancer cells (MDA-MB-231) after 48 h. Fluorescence-activated cell sorting (FACS) analysis indicated that the cellular uptakes of Alexa-488-labeled siRNA were found to be enhanced by more than 10 folds in the presence of [(WR)5C]-GdNPs compared with siRNA alone in CCRF-CEM and MDA-MB-231 cells after 6 h of incubation at 37 °C. The gene silencing efficacy of the nanoparticles was determined via the western blot technique using an over-expressed gene, STAT-3 protein, in MDA-MB-231 cells. The results showed ~62% reduction of STAT-3 was observed in MDA-MB-231 with [(WR)5C]-GdNPs at N/P 40. The integrity of the cellular membrane of CCRF-CEM cells was found to be intact when incubated with [(WR)5C]-Gd nanoparticles (50 µM) for 2 h. Confocal microscopy reveals higher internalization of siRNA in MDA-MB-231 cells using [(WR)5C]-GdNPs at N/P 40. These results provided insight about the use of the [(WR)5C]-GdNPs complex as a potent intracellular siRNA transporter that could be a nontoxic choice to be used as a transfection agent for nucleic-acid-based therapeutics.

9.
Pharmaceutics ; 12(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899170

ABSTRACT

The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the solution and conjugated with each other through an amide bond to afford the tricyclic peptide, which demonstrated modest antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli (E. coli) with a minimum inhibitory concentration (MIC) of 64-128 µg/mL. The tricyclic peptide was found to be nontoxic up to 30 µM in the breast cancer cell lines (MDA-MB-231). The presence of tricyclic peptide enhanced cellular uptakes of fluorescently-labeled phosphopeptide (F'-GpYEEI, 18-fold), anti-HIV drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), and stavudine (F'-d4T), 1.7-12-fold), and siRNA (3.3-fold) in the MDA-MB-231 cell lines.

10.
Pharmaceutics ; 12(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825689

ABSTRACT

A cyclic peptide containing one cysteine and five alternating tryptophan and arginine amino acids [(WR)5C] was synthesized using Fmoc/tBu solid-phase methodology. The ability of the synthesized cyclic peptide to produce gadolinium nanoparticles through an in situ one-pot mixing of an aqueous solution of GdCl3 with [(WR)5C] peptide solution was evaluated. Transmission electron microscopy showed the formed peptide-Gd nanoparticles in star-shape morphology with a size of ~250 nm. Flow cytometry investigation showed that the cellular uptake of a cell-impermeable fluorescence-labeled phosphopeptide (F'-GpYEEI, where F' = fluorescein) was approximately six times higher in the presence of [(WR)5C]-Gd nanoparticles than those of F'-GpYEEI alone in human leukemia adenocarcinoma (CCRF-CEM) cells after 2 h incubation. The antiproliferative activities of cisplatin and carboplatin (5 µM) were increased in the presence of [(WR)5C]-GdNPs (50 µM) by 41% and 18%, respectively, after 72-h incubation in CCRF-CEM cells. The intracellular release of epirubicin, an anticancer drug, from the complex showed that 15% and 60% of the drug was released intracellularly within 12 and 48 h, respectively. This report provides insight about using a non-toxic MRI agent, gadolinium nanoparticles, for the delivery of various types of molecular cargos.

11.
Molecules ; 25(11)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498339

ABSTRACT

We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4-5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast carcinoma (MDA-MB-231), and normal kidney (LLCPK) cells after 24 and 72 h incubation. Both cyclic [C(WR)5C] and linear (C(WR)5C) demonstrated comparable molecular transporter properties versus [WR]5 in the delivery of a phosphopeptide (F'-GpYEEI) in CCRF-CEM cells. The uptake of F'-GpYEEI in the presence of 1,4-dithiothreitol (DTT) as the reducing agent was significantly improved in case of l(C(WR)5C), while it was not changed by [C(WR)5C]. Fluorescence microscopy also demonstrated a significant uptake of F'-GpYEEI in the presence of l(C(WR)5C). Cyclic [C(WR)5C] improved the uptake of the fluorescent-labeled anti-HIV drugs F'-d4T, F'-3TC, and F'-FTC by 3.0-4.9-fold. These data indicate that both [C(WR)5C] and linear (C(WR)5C) peptides can act as molecular transporters.


Subject(s)
Arginine/chemistry , Cell-Penetrating Peptides/chemical synthesis , Disulfides/chemistry , Tryptophan/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Cyclization , Drug Delivery Systems , Humans , Molecular Structure
12.
Molecules ; 25(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370213

ABSTRACT

N1-(α,ß-Alkene)-substituted phenylpyrazolopyrimidine derivatives with acetyl and functionalized phenyl groups at α- and ß-positions, respectively, were synthesized by the reaction of 3-phenylpyrazolopyrimidine (PhPP) with bromoacetone, followed by a chalcone reaction with differently substituted aromatic aldehydes. The Src kinase enzyme assay revealed modest inhibitory activity (half maximal inhibitory concentration, IC50 = 21.7-192.1 µM) by a number of PhPP derivatives. Antiproliferative activity of the compounds was evaluated on human leukemia (CCRF-CEM), human ovarian adenocarcinoma (SK-OV-3), breast carcinoma (MDA-MB-231), and colon adenocarcinoma (HT-29) cells in vitro. 4-Chlorophenyl carbo-enyl substituted 3-phenylpyrazolopyrimidine (10) inhibited the cell proliferation of HT-29 and SK-OV-3 by 90% and 79%, respectively, at a concentration of 50 µM after 96 h incubation. The compound showed modest inhibitory activity against c-Src (IC50 = 60.4 µM), Btk (IC50 = 90.5 µM), and Lck (IC50 = 110 µM), while it showed no activity against Abl1, Akt1, Alk, Braf, Cdk2, and PKCa. In combination with target selection and kinase profiling assay, extensive theoretical studies were carried out to explore the selectivity behavior of compound 10. Specific interactions were also explored by examining the changing trends of interactions of tyrosine kinases with the phenylpyrazolopyrimidine derivative. The results showed good agreement with the experimental selectivity pattern among c-Src, Btk, and Lck.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/chemistry
13.
J Phys Condens Matter ; 32(4): 044001, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31581136

ABSTRACT

Stimuli-responsive (pH and temperature sensitive) photoluminescence hybrid particles are prepared using oppositely charged cationic microgels of Poly(N-isopropyl polyacrylamide) (PNIPAm) and anionic cadmium sulfide (CdS) quantum dots (QDs). A facile synthetic strategy such as in situ/post incorporation of QDs along with pH tuneable electrostatic interactions is optimized to obtain hybrid microgels with maximum photoluminescence. Transmission electron microscope (TEM), fluorescence spectroscopy and dynamic light scattering (DLS) methods are used for characterizing the synthesized hybrid particles. TEM studies directly confirm the successful loading of QDs onto microgels whereas fluorescence spectroscopy reveals higher photo luminosity of the hybrid microgels prepared via in situ compared to post incorporation method. The pH-dependent photoluminescence supported by temperature-dependent swelling studies using DLS suggest that the hybrid microgels prepared at low pH have greater fluorescence with less thermoresponsivity and these behaviors follow an opposite trend with increasing pH. Further, these results are compared with the hybrid microgels prepared using similar charged anionic microgels and anionic quantum dots under same experimental condition (via in situ) and suggest that maximum photoluminescence can be achieved only through oppositely charged species.

14.
Int J Pharm ; 563: 198-207, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30953762

ABSTRACT

Based on the cell penetrating ability of tryptophan-containing peptides, eight linear hexapeptides have been designed, synthesized and explored their efficiency toward the synthesis of gold nanoparticles under sunlight. The peptide generated gold nanoparticles (LP-GNPs) have been characterized by UV-visible spectroscopy, Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) techniques. The binding ability of LP-GNPs toward siRNA, evaluated by gel electrophoresis indicates that sequence-selective-GNPs without any surface modifications exhibit strong affinity toward negatively charged biomolecules. Cellular uptake studies suggest that LP-GNPs exhibit significant uptake of fluorescence-labeled siRNA inside the cells as evidenced from Fluorescence Microscopy. In vitro gene silencing efficiency using newly generated GNPs revealed that above mentioned LP-GNPs efficiently down-regulate the level of GAPGH gene in colon cancer cells. Comparative gene silencing efficiency results indicate that anisotropic LP7-GNPs exhibit comparable efficacy to other existing carrier systems, such as Lipofectamine 2000 in presence of serum, mimicking in-vivo system. In conclusion, our results demonstrate that peptide-GNPs based delivery system for siRNA emerges to be effective to deliver RNAi therapeutics, uncovering new avenue in oncotherapy.


Subject(s)
Arginine/administration & dosage , Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Oligopeptides/administration & dosage , RNA, Small Interfering/administration & dosage , Tryptophan/administration & dosage , Cell Survival/drug effects , Gene Transfer Techniques , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , HCT116 Cells , Humans
15.
Artif Cells Nanomed Biotechnol ; 46(sup3): S763-S773, 2018.
Article in English | MEDLINE | ID: mdl-30311806

ABSTRACT

RNA interference shows a great strategy for biological studies; however, delivering of small interfering RNA (siRNA) remains challenging. Although several delivery vehicles, including cell-penetrating peptides, have been developed, their implementation is often restricted because of their endosomal entrapment. Herein, we report the formation of self-assembled nanostructures from rationally designed cyclic peptides and explore them for efficient delivery of functional biomacromolecules such as siRNA into mammalian cells. The newly obtained soft materials make stable complexes with siRNAs, thereby increasing their stability and deliver fluorescent labelled siRNA inside the cells as evident from confocal microscopy analysis. Flow cytometry analysis reveals that significant uptake of FAM-siRNA occurs in the presence of peptide nanostructures compared with siRNA alone. Peptide nanostructure-mediated delivery of very low concentration of siRNA causes significant knockdown of the target gene as observed at protein level by Western blot analysis, which is comparable to lipofectamine, commercially available transfection agent.


Subject(s)
Drug Carriers , Nanostructures/chemistry , Peptides, Cyclic , RNA, Small Interfering , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HCT116 Cells , Humans , Nanostructures/ultrastructure , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Peptides, Cyclic/pharmacology , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/pharmacology
16.
Chem Commun (Camb) ; 54(32): 3981-3984, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29611570

ABSTRACT

Polyphenol functionalized silver nanoparticles (AgNPs) have been developed and demonstrated as colorimetric sensors for the selective detection of gadolinium. The newly obtained AgNP-Gd3+ conjugates exhibit high aqueous dispersibility and excitation dependent fluorescence emission. The conjugates offer multicolor bioimaging potential owing to their excellent luminescence properties.

17.
J Photochem Photobiol B ; 164: 306-313, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27721164

ABSTRACT

In this article, light induced plant extract mediated one pot synthesis of silver nanoparticles (AgNPs) has been demonstrated and potential mechanistic insight in the synthesis has been investigated. Bioactive molecules containing medicinal plant Cassytha filiformis has been explored for the synthesis of silver nanoparticles. The as-synthesized silver nanoparticles were characterized by various analytical techniques including Ultraviolet-visible spectroscopy (UV-Vis), High Resolution Transmission Electron Microscopy (HR-TEM), Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FT-IR). Among different light sources (sunlight, room light, UV) applied the sunlight was found to be efficient external stimuli to induce rapid synthesis of AgNPs at room temperature. Modified DPPH assay indicated that polyphenolic compounds were most likely involved in the synthesis of AgNPs. Possible molecule responsible for the synthesis of AgNPs was identified, purified and characterized. Potential biomedical applications such as antibacterial, antifungal and anticancer activities of AgNPs have been evaluated. Irrespective of nature of pathogenic strains nanoparticles exhibited significant antibacterial activities against Gram positive (Streptococcus aureus) and Gram negative (Escherichia coli) bacterial pathogens. It showed higher activity on E. coli than on S. aureus. Distinct antifungal activity (MIC=5.244µg/ml) and remarkable anticancer activity (IC50=10µg/ml) was found against Candida albicans and HCT116 (colorectal carcinoma) cells, respectively. Taken together, these findings suggested that light induced plant generated silver nanoparticles could be used for various biomedical purposes.


Subject(s)
Metal Nanoparticles/chemistry , Photochemical Processes , Silver/chemistry , Microscopy, Electron, Transmission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
18.
Molecules ; 19(9): 13319-31, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25170952

ABSTRACT

Previously, we have reported the synthesis of a homochiral l-cyclic peptide [WR]5 and its use for delivery of anti-HIV drugs and biomolecules. A physical mixture of HAuCl4 and the peptide generated peptide-capped gold nanoparticles. Here, [WR]5 and [WR]5-AuNPs were tested for their efficiency to deliver a small interfering RNA molecule (siRNA) in human cervix adenocarcinoma (HeLa) cells. Flow cytometry investigation revealed that the intracellular uptake of a fluorescence-labeled non-targeting siRNA (200 nM) was enhanced in the presence of [WR]5 and [WR]5-AuNPs by 2- and 3.8-fold when compared with that of siRNA alone after 24 h incubation. Comparative toxicity results showed that [WR]5 and [WR]5-AuNPs were less toxic in cells compared to other available carrier systems, such as Lipofectamine.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Peptides, Cyclic/chemistry , RNA, Small Interfering/metabolism , Transfection , Amino Acid Sequence , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Gene Knockdown Techniques/methods , HeLa Cells , Humans , Peptides, Cyclic/metabolism , RNA, Small Interfering/genetics
19.
Org Biomol Chem ; 12(22): 3544-61, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24756480

ABSTRACT

The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance to proteins. Inspired by the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular structures, fibers, vesicles, and spherical and rod-coil structures. While different peptide nanostructures have been discovered, potential applications are explored in drug delivery, tissue engineering, wound healing, and surfactants.


Subject(s)
Nanostructures/chemistry , Peptides/chemistry , Amino Acid Sequence , Amyloid/chemistry , Molecular Sequence Data , Nanostructures/ultrastructure , Protein Structure, Secondary
20.
Soft Matter ; 9(39)2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24187575

ABSTRACT

A number of cyclic peptides including [FR]4, [FK]4, [WR]4, [CR]4, [AK]4, and [WK]n (n = 3-5) containing L-amino acids were produced using solid-phase peptide synthesis. We hypothesized that an optimal balance of hydrophobicity and charge could generate self-assembled nanostructures in aqueous solution by intramolecular and/or intermolecular interactions. Among all the designed peptides, [WR]n (n = 3-5) generated self-assembled vesicle-like nanostructures at room temperature as shown by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and/or dynamic light scattering (DLS). This class of peptides represents the first report of surfactant-like cyclic peptides that self-assemble into nanostructures. A plausible mechanistic insight into the self-assembly of [WR]5 was obtained by molecular modeling studies. Modified [WR]5 analogues, such as [WMeR]5, [WR(Me)2]5, [WMeR(Me)2]5, and [WdR]5, exhibited different morphologies to [WR]5 as shown by TEM observations. [WR]5 exhibited a significant stabilizing effect for generated silver nanoparticles and glyceraldehyde-3-phosphate dehydrogenase activity. These studies established a new class of surfactant-like cyclic peptides that self-assembled into nanostructures and could have potential applications for the stabilization of silver nanoparticles and protein biomolecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...