Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 17(4): e2100266, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35075794

ABSTRACT

The production of biopharmaceuticals in engineered plant-based systems is a promising technology that has proven its suitability for the production of various recombinant glyco-proteins that are currently undergoing clinical trials. However, compared to mammalian cell lines, the productivity of plant-based systems still requires further improvement. A major obstacle is the proteolytic degradation of recombinant target proteins by endogenous plant proteases mainly from the subtilisin family of serine proteases. In the present study, the authors screened for putative small molecule inhibitors for subtilases that are secreted from tobacco BY-2 suspension cells using an in silico approach. The effectiveness of the substances identified in this screen was subsequently tested in degradation assays using the human broadly-neutralizing anti-HIV monoclonal antibody 2F5 (mAb2F5) and spent BY-2 culture medium as a model system. Among 16 putative inhibitors identified by in silico studies, three naphthalene sulfonic acid derivatives showed inhibitory activity in in vitro degradation assays and are similar to or even more effective than phenylmethylsulfonyl fluoride (PMSF), a classical inhibitor of serine proteases, which served as positive control.


Subject(s)
HIV Antibodies , HIV-1 , Animals , HIV Antibodies/metabolism , HIV Envelope Protein gp41/metabolism , Humans , Mammals , Recombinant Proteins/metabolism , Serine Proteases/metabolism , Nicotiana/genetics , Nicotiana/metabolism
2.
Phys Rev Lett ; 123(20): 201602, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809080

ABSTRACT

Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.

3.
Biotechnol J ; 13(7): e1800050, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29528190

ABSTRACT

Medicago truncatula is an established model for studying legume biology. More recently, it has also been exploited as a Molecular Farming platform for the production of recombinant proteins, with the successful expression of fungal and human proteins in plants and cell suspension cultures of this species. One of the challenges that now must be overcome is the degradation of final products during production and downstream processing stages. In the M. truncatula genome, there are more than 400 putative protease-encoding genes, but to date, the proteolytic content of Medicago cell cultures has not been studied. In this report, the proteolytic activities that can potentially hamper the successful production of recombinant proteins in this system are evaluated. The potential proteases responsible for the degradation of target proteins are identified. Interestingly, the number of proteases found in Medicago spent medium is considerably lower than that of the well-established tobacco bright yellow 2 (BY-2) system. Papain-like cysteine proteases are found to be the major contributors to recombinant protein degradation in Medicago. This knowledge is used to engineer a cell line with reduced endogenous protease activity by expressing a selective protease inhibitor, further improving this expression platform.


Subject(s)
Medicago truncatula , Peptide Hydrolases/metabolism , Plant Proteins/metabolism , Recombinant Proteins/analysis , Cell Culture Techniques , Cell Engineering , Medicago truncatula/enzymology , Medicago truncatula/genetics , Medicago truncatula/metabolism , Peptide Hydrolases/genetics , Plant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection
4.
Front Plant Sci ; 7: 267, 2016.
Article in English | MEDLINE | ID: mdl-27014293

ABSTRACT

Although the field of molecular farming has significantly matured over the last years, some obstacles still need to be resolved. A major limiting factor for a broader application of plant hosts for the production of valuable recombinant proteins is the low yield of intact recombinant proteins. These low yields are at least in part due to the action of endogenous plant proteases on the foreign recombinant proteins. This mini review will present the current knowledge of the proteolytic enzymes involved in the degradation of different target proteins and strategies that are applied to suppress undesirable proteolytic activities in order to safeguard recombinant proteins during the production process.

5.
Biotechnol J ; 9(8): 1065-73, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24828029

ABSTRACT

Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures.


Subject(s)
Antibodies, Monoclonal/metabolism , Nicotiana/enzymology , Peptide Hydrolases/metabolism , Plant Proteins/metabolism , RNA, Antisense/metabolism , Broadly Neutralizing Antibodies , Cell Culture Techniques , HIV Antibodies , HIV Envelope Protein gp41/metabolism , Immunoglobulin kappa-Chains/metabolism , Models, Molecular , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Protein Structure, Secondary , Recombinant Proteins/metabolism , Nicotiana/genetics
6.
RSC Adv ; 2(5): 1970-1978, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-28638593

ABSTRACT

We describe a novel nanobiotechnology platform based on subviral particles derived from infectious bursal disease virus (IBD-SVPs). The major virus coat protein VP2 assembles into spherical, 23 nm SVPs when expressed as a heterologous protein in the yeast Pichia pastoris. We recovered up to 38 mg of IBD-SVPs at > 95% purity from 1 L of recombinant yeast culture. The purified particles were able to tolerate organic solvents up to 20% concentration (ethanol or dimethylsulfoxide), they resisted temperatures up to 65 °C and remained stable over a wide pH range (2.5-9.0). We achieved bioconjugation to the amine groups of lysine residues and to the carboxyl groups of aspartic and glutamic acid residues, allowing the functionalization of IBD-SVPs with biotin. The accessibility of surface amine groups was measured using Alexa Fluor 488 N-hydroxysuccinimide (NHS) ester, an amine-selective fluorescent dye, revealing that approximately 60 dye molecules were attached to the surface of each particle. IBD-SVPs can therefore be exploited as a robust and versatile nanoscaffold to display diverse functional ligands.

7.
Planta ; 232(4): 899-910, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20635096

ABSTRACT

A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.


Subject(s)
Matrix Metalloproteinases/metabolism , Nicotiana/cytology , Nicotiana/enzymology , Plant Proteins/metabolism , Antibodies, Monoclonal , Immunoblotting
8.
BMC Plant Biol ; 9: 83, 2009 Jun 29.
Article in English | MEDLINE | ID: mdl-19563670

ABSTRACT

BACKGROUND: Plant matrix metalloproteinases (MMP) are conserved proteolytic enzymes found in a wide range of monocotyledonous and dicotyledonous plant species. Acting on the plant extracellular matrix, they play crucial roles in many aspects of plant physiology including growth, development and the response to stresses such as pathogen attack. RESULTS: We have identified the first tobacco MMP, designated NtMMP1, and have isolated the corresponding cDNA sequence from the tobacco suspension cell line BY-2. The overall domain structure of NtMMP1 is similar to known MMP sequences, although certain features suggest it may be constitutively active rather than dependent on proteolytic processing. The protein appears to be expressed in two forms with different molecular masses, both of which are enzymatically active as determined by casein zymography. Exchanging the catalytic domain of NtMMP1 with green fluorescent protein (GFP) facilitated subcellular localization by confocal laser scanning microscopy, showing the protein is normally inserted into the plasma membrane. The NtMMP1 gene is expressed constitutively at a low level but can be induced by exposure to bacterial pathogens. CONCLUSION: Our biochemical analysis of NtMMP1 together with bioinformatic data on the primary sequence indicate that NtMMP1 is a constitutively-active protease. Given its induction in response to bacterial pathogens and its localization in the plasma membrane, we propose a role in pathogen defense at the cell periphery.


Subject(s)
Cell Membrane/enzymology , Matrix Metalloproteinases/metabolism , Nicotiana/genetics , Plant Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cell Line , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Matrix Metalloproteinases/genetics , Molecular Sequence Data , Plant Proteins/genetics , Sequence Alignment , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...