Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 32(9): e4737, 2023 09.
Article in English | MEDLINE | ID: mdl-37497650

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.


Subject(s)
Bacterial Proteins , Cold Shock Proteins and Peptides , Endopeptidases , Heat-Shock Proteins , Methicillin-Resistant Staphylococcus aureus , Staphylococcus Phages , Humans , Cold Shock Proteins and Peptides/chemistry , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/metabolism , Methicillin-Resistant Staphylococcus aureus/virology , Bacterial Proteins/chemistry , Heat-Shock Proteins/chemistry , Staphylococcus Phages/enzymology
2.
Environ Res ; 214(Pt 4): 114119, 2022 11.
Article in English | MEDLINE | ID: mdl-36007568

ABSTRACT

Composting is a propitious technology to change bio-degradable solid waste into organic fertilizers. Considering this, five types of organic waste viz., leaf litter (Tectona grandis), water hyacinth (Eichhornia crassipes), cauliflower waste (Brassica oleracea var. botrytis), coir pith, and mushroom spent waste were composted with and without the use of earthworm (Eisenia fetida). The reaction (pH) and electrical conductivity of compost and vermicompost ranged from 6.98 to 7.45 and 6.97 to 7.36, 0.11 to 0.21 dSm-1, and 0.11 to 0.25 dSm-1, respectively. The chemical oxygen demand both the compost and vermicompost ranged from 687 to 1170 mg l-1 and 633-980 mg l-1 respectively. Cation exchange capacity (CEC) ranged from, 75 to 121 (c mol (p+) kg-1, and 80 to 127 (c mol (p+) kg-1, respectively. The C:N of compost and vermicompost varied from 16:1 to 33:1 and 12:1 to 19:1, respectively. The organic carbon content was decreased (18.3-38.7%), while secondary and micronutrient contents increased over the initial concentration. The NH4+ and NO3- content of compost and vermicompost ranged from 270 to 510 mg kg-1 and 230-430 mg kg-1, 560 to 105 mg kg-1, and 690-1100 mg kg-1, respectively. The nitrification index (NH4+/NO3-) ranged from 0.3 to 0.9 in composts and 0.3 to 0.6 in vermicomposts. The dehydrogenase and urease activity varied from 685 to 1696 µg g-1 hr-1 and 938-2549 µg TPF g-1 day-1 respectively. The bacteria, fungi and actinomycetes population were 2-3, 0.3-0.7 and 3-8 times more in vermicompost over the corresponding compost. This study confirmed that compared to compost, vermicompost showed better nutrients and microbial properties.


Subject(s)
Composting , Oligochaeta , Animals , Cattle , Feces , Female , Manure , Soil/chemistry , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...